Skip to main content

Preliminary study of monoexponential, biexponential, and stretched-exponential models of diffusion-weighted MRI and diffusion kurtosis imaging on differential diagnosis of spinal metastases and chordoma



Quantitative comparison of diffusion parameters from various models of diffusion-weighted (DWI) and diffusion kurtosis (DKI) imaging for distinguishing spinal metastases and chordomas.


DWI and DKI examinations were performed in 31 and 13 cases of spinal metastases and chordomas, respectively. DWI derived apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f), water molecular distributed diffusion coefficient (DDC), and intravoxel water diffusion heterogeneity (α). DKI derived mean diffusivity (MD) and mean kurtosis (MK). Independent sample t-testing compared statistical differences among parameters. Sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve were determined. Pearson correlation analysis evaluated the parameters’ correlations.


ADC, D, f, DDC, α, and MD were significantly lower in spinal metastases than chordomas (all P < 0.05). MK was significantly higher in spinal metastases than chordomas (P < 0.05). D had the highest area under the ROC curve (AUC) of 0.886, greater than MD (AUC = 0.706) or DDC (AUC = 0.742) in differentiating the two tumors (both P < 0.05). Combining D with f and α statistically significantly increased the AUC for diagnosis (to 0.995) relative to D alone (P < 0.05). There was a certain correlation among DDC, ADC, and D (all P < 0.05).


Monoexponential, biexponential, and stretched-exponential models of DWI and DKI can potentially differentiate spinal metastases and chordomas. D combined with f and α performed best.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3–5


  1. Zambo I, Vesely K (2014) WHO classification of tumours of soft tissue and bone 2013: the main changes compared to the 3rd edition. Cesk Patol 50: 64–70

  2. Wang F, Chu C, Zhao C et al (2019) Diffusion kurtosis imaging in sacroiliitis to evaluate the activity of ankylosing spondylitis. J Magn Reson Imag 49(101):108

    Google Scholar 

  3. Hui ES, Cheung MM, Qi L et al (2008) Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage 42:122–134

    Article  Google Scholar 

  4. Surov A, Nagata S, Razek AA et al (2015) Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skeletal Radiol 44:995–1000

    Article  Google Scholar 

  5. Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  Google Scholar 

  6. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  Google Scholar 

  7. Bennett KM, Schmainda KM, Bennett RT et al (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50:727–734

    Article  Google Scholar 

  8. Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440

    Article  Google Scholar 

  9. Bai Y, Lin Y, Tian J et al (2016) Grading of gliomas by Using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology 278:496–504

    Article  Google Scholar 

  10. Wang F, Wang Y, Zhou Y et al (2017) Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models. J Magn Reson Imag 46:1797–1809

    Article  Google Scholar 

  11. Fusco R, Sansone M, Granata V et al (2019) Diffusion and perfusion MR parameters to assess preoperative short-course radiotherapy response in locally advanced rectal cancer: a comparative explorative study among Standardized Index of Shape by DCE-MRI, intravoxel incoherent motion- and diffusion kurtosis imaging-derived parameters. Abdom Radiol (NY) 44:3683–3700

    Article  Google Scholar 

  12. Wan Q, Deng YS, Lei Q et al (2019) Differentiating between malignant and benign solid solitary pulmonary lesions: Are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 29:1607–1615

    Article  Google Scholar 

  13. Shirota N, Saito K, Sugimoto K et al (2016) Intravoxel incoherent motion MRI as a biomarker of sorafenib treatment for advanced hepatocellular carcinoma: a pilot study. Cancer Imag 16:1

    Article  Google Scholar 

  14. Zhu L, Pan Z, Ma Q et al (2017) Diffusion kurtosis imaging study of rectal Adenocarcinoma associated with histopathologic prognostic factors: preliminary findings. Radiology 284:66–76

    Article  Google Scholar 

  15. Ogawa M, Kan H, Arai N et al (2019) Differentiation between malignant and benign musculoskeletal tumors using diffusion kurtosis imaging. Skeletal Radiol 48:285–292

    Article  Google Scholar 

  16. Wu G, Xie R, Liu X et al (2019) Intravoxel incoherent motion diffusion MR and diffusion kurtosis imaging for discriminating atypical bone metastasis from benign bone lesion. Br J Radiol 92:20190119

    Article  Google Scholar 

  17. Bourillon C, Rahmouni A, Lin C et al (2015) Intravoxel incoherent motion diffusion-weighted imaging of multiple myeloma lesions: correlation with whole-body dynamic contrast agent-enhanced MR imaging. Radiology 277:773–783

    Article  Google Scholar 

  18. Zhao YH, Li SL, Liu ZY et al (2015) Detection of Active Sacroiliitis with Ankylosing Spondylitis through Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging. Eur Radiol 25:2754–2763

    Article  Google Scholar 

  19. Akashi M, Nakahusa Y, Yakabe T et al (2014) Assessment of aggressiveness of rectal cancer using 3-T MRI: correlation between the apparent diffusion coefficient as a potential imaging biomarker and histologic prognostic factors. Acta Radiol 55:524–531

    Article  Google Scholar 

  20. Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI–a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5:220–233

    Article  Google Scholar 

  21. Hatakenaka M, Soeda H, Yabuuchi H et al (2008) Apparent diffusion coefficients of breast tumors: clinical application. Magn Reson Med Sci 7:23–29

    Article  Google Scholar 

  22. Zhang J, Chen Y, Zhang E et al (2020) Use of monoexponential diffusion-weighted imaging and diffusion kurtosis imaging and dynamic contrast-enhanced-MRI for the differentiation of spinal tumors. Eur Spine J 29:1112–1120

    Article  Google Scholar 

  23. Hui ES, Cheung MM, Qi L et al (2008) Advanced MR diffusion characterization of neural tissue using directional diffusion kurtosis analysis. Conf Proc IEEE Eng Med Biol Soc 2008:3941–3944

    Google Scholar 

  24. Liu C, Wang K, Chan Q et al (2016) Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur Radiol 26:3888–3898

    Article  Google Scholar 

  25. Federau C, Hagmann P, Maeder P et al (2013) Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. PLoS One 8:e72856

    CAS  Article  Google Scholar 

  26. Winfield JM, Desouza NM, Priest AN et al (2015) Modelling DW-MRI data from primary and metastatic ovarian tumours. Eur Radiol 25:2033–2040

    Article  Google Scholar 

  27. Wu G, Liu X, Xiong Y et al (2018) Intravoxel incoherent motion and diffusion kurtosis imaging for discriminating soft tissue sarcoma from vascular anomalies. Medicine (Baltimore) 97:e13641

    Article  Google Scholar 

  28. Lemke A, Laun FB, Simon D et al (2010) An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 64:1580–1585

    Article  Google Scholar 

Download references


This study has received funding by National Natural Science Foundation of China (No. 81971578, No.81701648) and Clinical Key Project of Peking University Third Hospital (BYSY2018007).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ning Lang.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xing, X., Wang, Q. et al. Preliminary study of monoexponential, biexponential, and stretched-exponential models of diffusion-weighted MRI and diffusion kurtosis imaging on differential diagnosis of spinal metastases and chordoma. Eur Spine J (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Diffusion magnetic resonance imaging
  • Spine
  • Area under curve
  • Sensitivity and specificity