Skip to main content

ISSLS Prize in Bioengineering Science 2022: low rate cyclic loading as a therapeutic strategy for intervertebral disc regeneration

Abstract

Background

The intervertebral disc degenerates with age and has a poor propensity for regeneration. Small molecule transport plays a key role in long-term degradation and repair. Convection (bulk flow), induced by low rate cyclic loading of the intervertebral disc, has been shown to increase transport of small molecules. However, the potential therapeutic benefit of low rate cyclic loading on degenerated discs has not been described. The purpose of this study was to determine if a sustained (daily) low rate cyclic loading regimen could slow, arrest, or reverse intervertebral disc degeneration in the rabbit lumbar spine.

Methods

Fifty-six New Zealand white rabbits (>12 months old) were designated as either Control (no disc puncture), 8D (disc puncture followed by 8 weeks of degeneration), 16D (disc puncture followed by 16 weeks of degeneration), or Therapy (disc puncture followed by 8 weeks of degeneration and then 8 weeks of daily low rate cyclic loading). Specimens were evaluated by T2 mapping, Pfirrmann scale grading, nucleus volume, disc height index, disc morphology and structure, and proteoglycan content.

Results

In every metric, mean values for the Therapy group fell between Controls and 8D animals. These results suggest that sustained low rate cyclic loading had a therapeutic effect on the already degenerated disc and the regimen promoted signs of regeneration. If these results translate clinically, this approach could fulfil a significant clinical need by providing a means of non-invasively treating intervertebral disc degeneration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Raj PP (2008) Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 8:18–44

    PubMed  Google Scholar 

  2. Grunhagen T, Wilde G, Soukane D, Shirazi-Adl S, Urban J (2006) Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg 88-A:30–35

    Google Scholar 

  3. Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res, pp 296–302

  4. Guiot BH, Fessler RG (2000) Molecular biology of degenerative disc disease. Neurosurgery 47:1034–1040

    CAS  PubMed  Google Scholar 

  5. Bibby SR, Urban JP (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Euro Spine J Official Publication Euro Spine Soc Euro Spinal Deformity Soc Euro Sect Cervical Spine Res Soc 13:695–701. https://doi.org/10.1007/s00586-003-0616-x

    CAS  Article  Google Scholar 

  6. Bibby SR, Jones DA, Ripley RM, Urban JP (2005) Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30:487–496

    PubMed  Google Scholar 

  7. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17:829–835. https://doi.org/10.1002/jor.1100170607

    CAS  Article  PubMed  Google Scholar 

  8. Freemont A, Watkins A, Le Maitre C, Jeziorska M, Hoyland J (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol A J Pathol Soc Great Britain Ireland 196:374–379

    CAS  Google Scholar 

  9. Gullbrand SE, Peterson J, Mastropolo R, Roberts TT, Lawrence JP, Glennon JC, DiRisio DJ, Ledet EH (2015) Low rate loading induced convection enhances net transport into the intervertebral disc in vivo. Spine J 15:1028–1033

    PubMed  Google Scholar 

  10. Gullbrand SE, Peterson J, Ahlborn J, Mastropolo R, Fricker A, Roberts TT, Abousayed M, Lawrence JP, Glennon JC, Ledet EH (2015) ISSLS prize winner: dynamic loading–induced convective transport enhances intervertebral disc nutrition. Spine 40:1158–1164

    PubMed  Google Scholar 

  11. Capogna E, Walrath E, Brown E, Furst W, Glennon J, Ledet E (2021) Cyclic loading enhances small molecule transport in the 8-week degenerated rabbit intervertebral disc. In: Annual meeting of the orthopaedic research society. Orthopaedic Research Society, Virtual.

  12. Capogna E (2021) Convective small molecule transport: a therapeutic strategy for augmenting intervertebral disc regeneration. Rensselaer Polytechnic Institute

  13. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, Richter W (2002) New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine (Phila Pa 1976) 27:2684–2690. https://doi.org/10.1097/01.BRS.0000035265.07612.54

  14. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, Kang JD, Gilbertson LG (2005) A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30:15–24

    PubMed  Google Scholar 

  15. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5–14

    PubMed  Google Scholar 

  16. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878

  17. Griffith JF, Wang Y-XJ, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified Pfirrmann grading system for lumbar intervertebral disc degeneration. Spine 32:E708–E712

    PubMed  Google Scholar 

  18. Van Der Werf M, Lezuo P, Maissen O, Van Donkelaar CC, Ito K (2007) Inhibition of vertebral endplate perfusion results in decreased intervertebral disc intranuclear diffusive transport. J Anat 211:769–774

    PubMed  PubMed Central  Google Scholar 

  19. Gullbrand SE, Peterson J, Mastropolo R, Lawrence JP, Lopes L, Lotz J, Ledet EH (2014) Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo. J Orthop Res 32:1694–1700

    CAS  PubMed  Google Scholar 

  20. Kim K-T, Park S-W, Kim Y-B (2009) Disc height and segmental motion as risk factors for recurrent lumbar disc herniation. Spine 34:2674–2678

    PubMed  Google Scholar 

  21. Gullbrand SE, Ashinsky BG, Lai A, Gansau J, Crowley J, Cunha C, Engiles JB, Fusellier M, Muehleman C, Pelletier M (2021) Development of a standardized histopathology scoring system for intervertebral disc degeneration and regeneration in rabbit models‐an initiative of the ORS spine section. JOR Spine:e1147

  22. Pordzik J, Bernstein A, Mayr HO, Latorre SH, Maks A, Schmal H, Seidenstuecker M (2020) Analysis of proteoglycan content and biomechanical properties in arthritic and arthritis-free menisci. Appl Sci 10:9012

    CAS  Google Scholar 

  23. Xin L, Xu W, Wang J, Yu F, Fan S, Xu X, Yang Y (2021) Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model. Open Med 16:1616–1627

    CAS  Google Scholar 

  24. Emanuel KS, Mader KT, Peeters M, Kingma I, Rustenburg CM, Vergroesen P-P, Sammon C, Smit TH (2018) Early changes in the extracellular matrix of the degenerating intervertebral disc, assessed by Fourier transform infrared imaging. Osteoarthritis Cartilage 26:1400–1408

    CAS  PubMed  Google Scholar 

  25. Imanishi T, Akeda K, Murata K, Sudo A (2019) Effect of diminished flow in rabbit lumbar arteries on intervertebral disc matrix changes using MRI T2-mapping and histology. BMC Musculoskelet Disord 20:1–14

    CAS  Google Scholar 

  26. Gandhi SD, Maerz T, Mitchell S, Bachison C, Park DK, Fischgrund JS, Baker KC (2020) Intradiscal delivery of anabolic growth factors and a metalloproteinase inhibitor in a rabbit acute lumbar disc injury model. Int J Spine Surg 14:585–593

    PubMed  PubMed Central  Google Scholar 

  27. Xiong Y, Yang Y-L, Gao Y-S, Wang X-M, Yu X (2022) Histological changes of cervical disc tissue in patients with degenerative ossification. J Korean Neurosurg Soc, 65

  28. Marinelli NL, Haughton VM, Muñoz A, Anderson PA (2009) T2 relaxation times of intervertebral disc tissue correlated with water content and proteoglycan content. Spine 34:520–524

    PubMed  Google Scholar 

  29. Malandrino A, Noailly J, Lacroix D (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol 7:e1002112

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferguson S, Ito K, Nolte L (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37:213–221

    PubMed  Google Scholar 

  31. Mwale F, Masuda K, Pichika R, Epure LM, Yoshikawa T, Hemmad A, Roughley PJ, Antoniou J (2011) The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Res Ther 13:1–9

    Google Scholar 

  32. Chan DD, Khan SN, Ye X, Curtiss SB, Gupta MC, Klineberg EO, Neu CP (2011) Mechanical deformation and glycosaminoglycan content changes in a rabbit annular puncture disc degeneration model. Spine 36:1438–1445

    PubMed  Google Scholar 

  33. Gregory DE, Bae WC, Sah RL, Masuda K (2014) Disc degeneration reduces the delamination strength of the annulus fibrosus in the rabbit annular disc puncture model. Spine J 14:1265–1271

    PubMed  PubMed Central  Google Scholar 

  34. Leckie SK, Bechara BP, Hartman RA, Sowa GA, Woods BI, Coelho JP, Witt WT, Dong QD, Bowman BW, Bell KM (2012) Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine J 12:7–20

    PubMed  Google Scholar 

  35. Ashinsky B, Gullbrand S, Bonnevie E, Mandalapu S, Wang C, Elliott D, Han L, Mauck R, Smith H (2019) Multiscale and multimodal structure–function analysis of intervertebral disc degeneration in a rabbit model. Osteoarthritis Cartilage 27:1860–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernando HN, Czamanski J, Yuan TY, Gu W, Salahadin A, Huang CYC (2011) Mechanical loading affects the energy metabolism of intervertebral disc cells. J Orthop Res 29:1634–1641

    PubMed  PubMed Central  Google Scholar 

  37. MacLean J, Lee C, Alini M, Iatridis J (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res Official Publication Orthop Res Soc 22:1193–1200

    CAS  Google Scholar 

  38. Walsh AJ, Lotz JC (2004) Biological response of the intervertebral disc to dynamic loading. J Biomech 37:329–337

    PubMed  Google Scholar 

  39. Wang D, Jiang S, Dai L (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine 32:2521–2528

    PubMed  Google Scholar 

  40. Iatridis J, MacLean J, Roughley P, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Joint Surg 88-A:41–46

  41. MacLean J, Lee C, Alini M, Iatridis J (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res Official Publication Orthopaedic Res Soc 23:1120–1127

    CAS  Google Scholar 

  42. Perera PM, Wypasek E, Madhavan S, Rath-Deschner B, Liu J, Nam J, Rath B, Huang Y, Deschner J, Piesco N (2010) Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res Ther 12:R106

    PubMed  PubMed Central  Google Scholar 

  43. Podichetty VK (2006) The aging spine: the role of inflammatory mediators in intervertebral disc degeneration. Cellular Molecular Biol (Noisy-le-Grand, France) 53:4–18

  44. Gawri R, Moir J, Ouellet J, Beckman L, Steffen T, Roughley P, Haglund L (2014) Physiological loading can restore the proteoglycan content in a model of early IVD degeneration. PLoS ONE 9:e101233

    PubMed  PubMed Central  Google Scholar 

  45. Wuertz K, Godburn K, MacLean J, Barbir A, Donnelly J, Roughley P, Alini M, Iatridis J (2009) In vivo remodeling of intervertebral discs in response to short and long-term dynamic compression. J Orthop Res Official Publication Orthopaedic Res Soc, 27

  46. Urban JP, Holm S, Maroudas A, Nachemson A (1977) Nutrition of the intervertebral disk. An in vivo study of solute transport. Clin Orthop Relat Res, pp 101–114

  47. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    CAS  PubMed  Google Scholar 

  48. Horner HA, Urban JP (2001) Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 26:2543–2549

  49. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    PubMed  Google Scholar 

  50. Ashinsky BG, Bonnevie ED, Mandalapu SA, Pickup S, Wang C, Han L, Mauck RL, Smith HE, Gullbrand SE (2020) Intervertebral disc degeneration is associated with aberrant endplate remodeling and reduced small molecule transport. J Bone Miner Res 35:1572–1581

    PubMed  Google Scholar 

  51. Arun R, Freeman BJ, Scammell BE, McNally DS, Cox E, Gowland P (2009) 2009 ISSLS Prize Winner: What influence does sustained mechanical load have on diffusion in the human intervertebral disc?: an in vivo study using serial postcontrast magnetic resonance imaging. Spine 34:2324–2337

    PubMed  Google Scholar 

  52. Scott N, Harris P, Bagnall K (1980) A morphological and histological study of the postnatal development of intervertebral discs in the lumbar spine of the rabbit. J Anat 130:75

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Poiraudeau S, Monteiro I, Anract P, Blanchard O, Revel M, Corvol MT (1999) Phenotypic characteristics of rabbit intervertebral disc cells: comparison with cartilage cells from the same animals. Spine 24:837–844

    CAS  PubMed  Google Scholar 

  54. Kwon W-K, Moon H, Kwon T-H, Park Y-K, Kim J (2017) Influence of rabbit notochordal cells on symptomatic intervertebral disc degeneration: anti-angiogenic capacity on human endothelial cell proliferation under hypoxia. Osteoarthritis Cartilage 25:1738–1746

    PubMed  Google Scholar 

  55. Kim K-W, Lim T-H, Kim JG, Jeong S-T, Masuda K, An HS (2003) The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28:982–990

    PubMed  Google Scholar 

  56. Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677. https://doi.org/10.1089/107632703768247368

    CAS  Article  PubMed  Google Scholar 

  57. Phillips F, Reuben J, Wetzel F (2002) Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model. J Bone Joint Surg Br 84:289–294

    CAS  PubMed  Google Scholar 

  58. Sowa G, Vadala G, Studer R, Kompel J, Iucu C, Georgescu H, Gilbertson L, Kang J (2008) Characterization of intervertebral disc aging: longitudinal analysis of a rabbit model by magnetic resonance imaging, histology, and gene expression. Spine 33:1821–1828. https://doi.org/10.1097/BRS.0b013e31817e2ce3

    Article  PubMed  Google Scholar 

  59. Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine 31:742–754

    PubMed  Google Scholar 

  60. Kanda Y, Yurube T, Morita Y, Takeoka Y, Kurakawa T, Tsujimoto R, Miyazaki K, Kakiuchi Y, Miyazaki S, Zhang Z (2021) Delayed notochordal cell disappearance through integrin α5β1 mechanotransduction during ex‐vivo dynamic loading‐induced intervertebral disc degeneration. J Orthop Res 39:1933–1944

  61. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    CAS  PubMed  Google Scholar 

  62. Callaghan JP, Gunning JL, McGill SM (1998) The relationship between lumbar spine load and muscle activity during extensor exercises. Phys Ther 78:8–18

    CAS  PubMed  Google Scholar 

  63. Cole TC, Ghosh P, Hannan NJ, Taylor TK, Bellenger CR (1987) The response of the canine intervertebral disc to immobilization produced by spinal arthrodesis is dependent on constitutional factors. J Orthop Res 5:337–347. https://doi.org/10.1002/jor.1100050305

    CAS  Article  PubMed  Google Scholar 

  64. Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine 29:2724–2732

    PubMed  PubMed Central  Google Scholar 

  65. Brisby H, Wei AQ, Molloy T, Chung SA, Murrell GA, Diwan AD (2010) The effect of running exercise on intervertebral disc extracellular matrix production in a rat model. Spine 35:1429–1436. https://doi.org/10.1097/BRS.0b013e3181e0f5bc

    Article  PubMed  Google Scholar 

  66. Videman T, Gibbons LE, Kaprio J, Battié MC (2010) Challenging the cumulative injury model: positive effects of greater body mass on disc degeneration. Spine J 10:26–31

    PubMed  Google Scholar 

  67. Kopec JA, Sayre EC, Esdaile JM (2004) Predictors of back pain in a general population cohort. Spine 29:70–77

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed at the Albany Stratton VA Medical Center and was supported by Merit Award I01RX002148 from the United States Department of Veterans Affairs Rehabilitation Research and Development Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Ledet.

Ethics declarations

Conflict of interest

The authors have no conflicts related to this research to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Capogna, E.A., Brown, E., Walrath, E. et al. ISSLS Prize in Bioengineering Science 2022: low rate cyclic loading as a therapeutic strategy for intervertebral disc regeneration. Eur Spine J 31, 1088–1098 (2022). https://doi.org/10.1007/s00586-022-07239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07239-2

Keywords

  • Intervertebral disc
  • Transport
  • Regeneration
  • Cyclic loading
  • Spine
  • Biomechanics