Skip to main content

Advertisement

Log in

Single-position circumferential lumbar spinal fusion: an overview of terminology, concepts, rationale and the current evidence base

  • Review article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To provide definitions and a conceptual framework for single position surgery (SPS) applied to circumferential fusion of the lumbar spine.

Methods

Narrative literature review and experts’ opinion.

Results

Two major limitations of lateral lumbar interbody fusion (LLIF) have been (a) a perceived need to reposition the patient to the prone position for posterior fixation, and (b) the lack of a robust solution for fusion at the L5/S1 level. Recently, two strategies for performing single-position circumferential lumbar spinal fusion have been described. The combination of anterior lumbar interbody fusion (ALIF) in the lateral decubitus position (LALIF), LLIF and percutaneous pedicle screw fixation (pPSF) in the lateral decubitus position is known as lateral single-position surgery (LSPS). Prone LLIF (PLLIF) involves transpsoas LLIF done in the prone position that is more familiar for surgeons to then implant pedicle screw fixation. This can be referred to as prone single-position surgery (PSPS). In this review, we describe the evolution of and rationale for single-position spinal surgery. Pertinent studies validating LSPS and PSPS are reviewed and future questions regarding the future of these techniques are posed. Lastly, we present an algorithm for single-position surgery that describes the utility of LALIF, LLIF and PLLIF in the treatment of patients requiring AP lumbar fusions.

Conclusions

Single position surgery in circumferential fusion of the lumbar spine includes posterior fixation in association with any of the following: lateral position LLIF, prone position LLIF, lateral position ALIF, and their combination (lateral position LLIF+ALIF). Preliminary studies have validated these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data associated with the manuscript may be available upon request.

References

  1. Mobbs RJ, Phan K, Malham G et al (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ahlquist S, Park HY, Gatto J et al (2018) Does approach matter? a comparative radiographic analysis of spinopelvic parameters in single level lumbar fusion. Spine J. https://doi.org/10.1016/j.spinee.2018.03.014

    Article  PubMed  Google Scholar 

  3. Malham GM, Parker RM, Ellis NJ et al (2014) Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. J Neurosurg Spine. https://doi.org/10.3171/2014.8.SPINE13524

    Article  PubMed  Google Scholar 

  4. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  5. Nomura H, Yamashita A, Watanabe T, Shirasawa K (2019) Quantitative analysis of indirect decompression in extreme lateral interbody fusion and posterior spinal fusion with a percutaneous pedicle screw system for lumbar spinal stenosis. J Spine Surg 5(2):266–272. https://doi.org/10.21037/jss.2019.06.03

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lang G, Perrech M, Navarro-Ramirez R et al (2017) Potential and limitations of neural decompression in extreme lateral interbody fusion: a systematic review. World Neurosurg 101:99–113

    Article  Google Scholar 

  7. Phillips FM, Isaacs RE, Rodgers WB et al (2013) Adult degenerative scoliosis treated with XLIF: clinical and radiographic results of a prospective multi-center study with 24-month follow-up. Spine. https://doi.org/10.1097/BRS.0b013e3182a43f0b

    Article  PubMed  Google Scholar 

  8. Voyadzis JM, Anaizi AN (2013) Minimally invasive lumbar transfacet screw fixation in the lateral decubitus position after extreme lateral interbody fusion: a technique and feasibility study. J Spinal Disord Tech. https://doi.org/10.1097/BSD.0b013e318241f6c3

    Article  PubMed  Google Scholar 

  9. Godzik J, Martinez-Del-Campo E, Newcomb AGUS et al (2018) Biomechanical stability afforded by unilateral versus bilateral pedicle screw fixation with and without interbody support using lateral lumbar interbody fusion. World Neurosurg 113:e439–e445. https://doi.org/10.1016/j.wneu.2018.02.053

    Article  PubMed  Google Scholar 

  10. Cappuccino A, Cornwall GB, Turner AWL et al (2010) Biomechanical analysis and review of lateral lumbar fusion constructs. Spine 35:S361–S367. https://doi.org/10.1097/BRS.0b013e318202308b

    Article  PubMed  Google Scholar 

  11. Blizzard DJ, Thomas JA (2018) MIS single-position lateral and oblique lateral lumbar interbody fusion and bilateral pedicle screw fixation. Spine 43:440–446. https://doi.org/10.1097/BRS.0000000000002330

    Article  PubMed  Google Scholar 

  12. Ziino C, Konopka JA, Ajiboye RM et al (2018) Single position versus lateral-then-prone positioning for lateral interbody fusion and pedicle screw fixation. J Spine Surg 4(4):717–724. https://doi.org/10.21037/jss.2018.12.03

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ziino C, Arzeno A, Cheng I (2019) Analysis of single-position for revision surgery using lateral interbody fusion and pedicle screw fixation: feasibility and perioperative results. J Spine Surg 5(2):201–206. https://doi.org/10.21037/jss.2019.05.09

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huntsman KT, Riggleman JR, Ahrendtsen LA, Ledonio CG (2020) Navigated robot-guided pedicle screws placed successfully in single-position lateral lumbar interbody fusion. J Robot Surg 14:643–647. https://doi.org/10.1007/s11701-019-01034-w

    Article  PubMed  Google Scholar 

  15. Ouchida J, Kanemura T, Satake K et al (2020) Simultaneous single-position lateral interbody fusion and percutaneous pedicle screw fixation using O-arm-based navigation reduces the occupancy time of the operating room. Eur Spine J. https://doi.org/10.1007/s00586-020-06388-6

    Article  PubMed  Google Scholar 

  16. Samuel AM, Fu MC, Anandasivam NS et al (2017) After posterior fusions for adult spinal deformity, operative time is more predictive of perioperative morbidity, rather than surgical invasiveness. Spine. https://doi.org/10.1097/BRS.0000000000002243

    Article  PubMed  Google Scholar 

  17. Kim BD, Hsu WK, de Oliveira GS et al (2014) Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases. Spine 39:510–520. https://doi.org/10.1097/BRS.0000000000000163

    Article  PubMed  Google Scholar 

  18. Saleh A, Thirukumaran C, Mesfin A, Molinari RW (2017) Complications and readmission after lumbar spine surgery in elderly patients: an analysis of 2,320 patients. Spine J 17:1106–1112. https://doi.org/10.1016/j.spinee.2017.03.019

    Article  PubMed  Google Scholar 

  19. Hersey AE, Durand WM, Eltorai AEM et al (2019) Longer operative time in elderly patients undergoing posterior lumbar fusion is independently associated with increased complication rate. Global Spine J 9:179–184. https://doi.org/10.1177/2192568218789117

    Article  PubMed  Google Scholar 

  20. Hsieh PC, Koski TR, O’Shaughnessy BA et al (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386. https://doi.org/10.3171/SPI-07/10/379

    Article  PubMed  Google Scholar 

  21. Quillo-Olvera J, Lin G-X, Jo H-J, Kim J-S (2018) Complications on minimally invasive oblique lumbar interbody fusion at L2–L5 levels: a review of the literature and surgical strategies. Ann Transl Med 6(6):101–101. https://doi.org/10.21037/atm.2018.01.22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walker CT, Farber SH, Cole TS et al (2019) Complications for minimally invasive lateral interbody arthrodesis: a systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J Neurosurg 30:446–460. https://doi.org/10.3171/2018.9.SPINE18800

    Article  Google Scholar 

  23. Malham GM, Wagner TP, Claydon MH (2019) Anterior lumbar interbody fusion in a lateral decubitus position: technique and outcomes in obese patients. J Spine Surg 5(4):433–442. https://doi.org/10.21037/jss.2019.09.09

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buckland AJ, Ashayeri K, Leon C et al (2021) Single position circumferential fusion improves operative efficiency, reduces complications and length of stay compared with traditional circumferential fusion. Spine J. https://doi.org/10.1016/j.spinee.2020.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thomas JA, Thomason CIM, Braly BA, Menezes CM (2020) Rate of failure of indirect decompression in lateral single-position surgery: clinical results. Neurosurg Focus 49:16–23. https://doi.org/10.3171/2020.6.FOCUS20375

    Article  Google Scholar 

  26. Tye EY, Tanenbaum JE, Alonso AS et al (2018) Circumferential fusion: a comparative analysis between anterior lumbar interbody fusion with posterior pedicle screw fixation and transforaminal lumbar interbody fusion for L5/S1 isthmic spondylolisthesis. Spine J 18:464–471. https://doi.org/10.1016/j.spinee.2017.08.227

    Article  PubMed  Google Scholar 

  27. Phan K, Rao PJ, Kam AC, Mobbs RJ (2015) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J. https://doi.org/10.1007/s00586-015-3903-4

    Article  PubMed  Google Scholar 

  28. Hammad A, Wirries A, Ardeshiri A et al (2019) Open versus minimally invasive TLIF: literature review and meta-analysis. J Orthop Surg Res 14:1–21. https://doi.org/10.1186/s13018-019-1266-y

    Article  Google Scholar 

  29. Lamartina C, Berjano P (2020) Prone single-position extreme lateral interbody fusion (Pro-XLIF): preliminary results. Eur Spine J 29:6–13. https://doi.org/10.1007/s00586-020-06303-z

    Article  PubMed  Google Scholar 

  30. Godzik J, Ohiorhenuan IE, Xu DS et al (2020) Single-position prone lateral approach: cadaveric feasibility study and early clinical experience. Neurosurg Focus. https://doi.org/10.3171/2020.6.FOCUS20359

    Article  PubMed  Google Scholar 

  31. Pimenta L, Pokorny G, Amaral R et al (2021) Single-position prone transpsoas lateral interbody fusion including L4L5: early postoperative outcomes. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.01.118

    Article  PubMed  Google Scholar 

  32. Smith TG, Joseph SA, Ditty B et al (2021) Initial multi-centre clinical experience with prone transpsoas lateral interbody fusion: feasibility, perioperative outcomes, and lessons learned. North Am Spine Soc J. https://doi.org/10.1016/j.xnsj.2021.100056

    Article  Google Scholar 

  33. Walker CT, Farber SH, Gandhi S et al (2021) Single-position prone lateral interbody fusion improves segmental lordosis in lumbar spondylolisthesis. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.04.128

    Article  PubMed  Google Scholar 

  34. Pimenta L, Amaral R, Taylor W et al (2021) The prone transpsoas technique: preliminary radiographic results of a multicenter experience. Eur Spine J. https://doi.org/10.1007/s00586-020-06471-y

    Article  PubMed  Google Scholar 

  35. Yson SC, Sembrano JN, Santos ERG et al (2012) Does prone repositioning before posterior fixation produce greater lordosis in lateral lumbar. J Spinal Disord Tech 27:364–369

    Article  Google Scholar 

  36. Blizzard D, Vovos T, Gallizzi M et al (2016) Interval effect of prone repositioning for posterior spinal instrumentation after lateral interbody fusion. J Spine Neurosurg 5:1–5

    Google Scholar 

  37. Soliman MAR, Khan A, Pollina J (2022) Comparison of prone transpsoas and standard lateral lumbar interbody fusion surgery for degenerative lumbar spine disease: a retrospective radiographic propensity score-matched analysis. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.08.097

    Article  PubMed  Google Scholar 

  38. Mills ES, Treloar J, Idowu O et al (2022) Single position lumbar fusion: a systematic review and meta-analysis. Spine J 22(3):429–443. https://doi.org/10.1016/j.spinee.2021.10.012

    Article  PubMed  Google Scholar 

  39. Hosseini P, Mundis GMJ, Eastlack RK et al (2017) Preliminary results of anterior lumbar interbody fusion, anterior column realignment for the treatment of sagittal malalignment. Neurosurg Focus 43:E6. https://doi.org/10.3171/2017.8.FOCUS17423

    Article  PubMed  Google Scholar 

  40. Pham MH, Diaz-Aguilar LD, Shah V et al (2021) Simultaneous robotic single position oblique lumbar interbody fusion with bilateral sacropelvic fixation in lateral decubitus. Neurospine 18(2):406–412. https://doi.org/10.14245/ns.2040774.387

    Article  PubMed  PubMed Central  Google Scholar 

  41. North RY, Strong MJ, Yee TJ et al (2021) Navigation and robotic-assisted single-position prone lateral lumbar interbody fusion: technique, feasibility, safety, and case series. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.05.097

    Article  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alex Thomas.

Ethics declarations

Conflict of interest

Dr. Thomas is a consultant for and receives institutional research support from NuVasive, Inc. (consulting fees and royalties) and a stockholder in TrackX technologies. Dr. Menezes is a consultant for NuVasive, Inc. (consulting fees, research grants, education and product development), a member of AOSPINE Education, and serves as the Brazilian Spine Society President. Dr. Buckland is a consultant for and receives institutional research support from NuVasive, Inc (consulting fees and royalties). Dr. Khajavi is a consultant for NuVasive, Inc. (consulting fees, royalties, education and product development). Dr. Ashayeri has no disclosures. Dr. Kwon is a consultant for NuVasive, Inc (consulting fees and royalties) and Prosidyan (consulting and stock ownership). Dr. Braly is a paid consultant for Stryker. Dr. Cheng is a consultant for NuVasive, Inc. (consulting, royalties), Globus Medical (Royalties), Spine Wave (Royalties), Surgalign (Consulting), Notogen (Stock, Advisory Board), Cytonics (Stock) and SpinalCyte (Stock).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J.A., Menezes, C., Buckland, A.J. et al. Single-position circumferential lumbar spinal fusion: an overview of terminology, concepts, rationale and the current evidence base. Eur Spine J 31, 2167–2174 (2022). https://doi.org/10.1007/s00586-022-07229-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07229-4

Keywords

Navigation