Skip to main content

Advertisement

Log in

Effect of endplate reduction on endplate healing morphology and intervertebral disc degeneration in patients with thoracolumbar vertebral fracture

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objective

To determine the effect of endplate reduction on the final healing morphology and degenerative changes in intervertebral discs.

Methods

Forty-eight patients with single-level thoracolumbar fractures with endplate injury were included. All patients underwent posterior reduction and pedicle screw fixation, and postoperative imaging was used to determine whether endplate reduction was successful. The healing morphology of the endplate was divided into three types: increased endplate curvature, irregular healing and traumatic Schmorl node. MRI was performed at baseline and at the last follow-up evaluation to observe changes in disc degeneration (disc height and nucleus pulposus signal) and Modic changes.

Results

The reduction rate in the central area was significantly lower than that in the peripheral area (P = 0.017). In patients with successful reduction, 90.9% (20/22) of the endplates healed with increased curvature. In patients with an unsuccessful endplate reduction, 63.4% (26/41) of the endplates healed irregularly, and 34.1% (14/41) of the endplates formed traumatic Schmorl nodes. Endplate reduction was closely related to the final healing morphology of the endplate (P < 0.001), which had a significant protective effect on the degeneration of the intervertebral disc. At the last follow-up evaluation, there was no statistically significant correlation between different endplate healing morphologies and new Modic changes.

Conclusions

The reduction rate in the central area is significantly lower than that in the peripheral area. Although all of the intervertebral discs corresponding to fractured endplates had degenerated to different degrees, successful endplate fracture reduction can obviously delay the degeneration of intervertebral discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holmes JF, Miller PQ, Panacek EA et al (2001) Epidemiology of thoracolumbar spine injury in blunt trauma. Acad Emerg Med 8(9):866–872. https://doi.org/10.1111/j.1553-2712.2001.tb01146.x

    Article  CAS  Google Scholar 

  2. Xu BS, Tang TS, Yang HL (2009) Long-term results of thoracolumbar and lumbar burst fractures after short-segment pedicle instrumentation, with special reference to implant failure and correction loss. Orthop surg 1(2):85–93. https://doi.org/10.1111/j.1757-7861.2009.00022.x

    Article  Google Scholar 

  3. Basaran R, Efendioglu M, Kaksi M et al (2019) Finite Element Analysis of Short- Versus Long-Segment Posterior Fixation for Thoracolumbar Burst Fracture. World neurosurgery 128:e1109–e1117. https://doi.org/10.1016/j.wneu.2019.05.077

    Article  Google Scholar 

  4. Kapoen C, Liu Y, Bloemers FW, Deunk J (2020) Pedicle screw fixation of thoracolumbar fractures: conventional short segment versus short segment with intermediate screws at the fracture level-a systematic review and meta-analysis. Eur Spine J 29(10):2491–2504. https://doi.org/10.1007/s00586-020-06479-4

    Article  Google Scholar 

  5. Oner FC, vd Rijt RH, Ramos LM et al (1999) Correlation of MR images of disc injuries with anatomic sections in experimental thoracolumbar spine fractures. Eur spine J 8(3):194–198. https://doi.org/10.1007/s005860050156

    Article  CAS  Google Scholar 

  6. Kitzen J, Schotanus M, Plasschaert H et al (2017) Treatment of thoracic or lumbar burst fractures with balloon assisted endplate reduction using tricalcium phosphate cement: histological and radiological evaluation. BMC Musculoskelet Disord 18(1):411. https://doi.org/10.1186/s12891-017-1770-3

    Article  Google Scholar 

  7. De Gendt E, Kuperus JS, Foppen W et al (2020) Clinical, radiological, and patient-reported outcomes 13 years after pedicle screw fixation with balloon-assisted endplate reduction and cement injection. Eur Spine J 29(4):914–921. https://doi.org/10.1007/s00586-020-06321-x

    Article  Google Scholar 

  8. Feng Z, Chen L, Hu X et al (2018) Vertebral augmentation can induce early signs of degeneration in the adjacent intervertebral disc: evidence from a rabbit model. Spine 43(20):E1195–E1203. https://doi.org/10.1097/BRS.0000000000002666

    Article  Google Scholar 

  9. Nguyen C, Poiraudeau S, Rannou F (2012) Vertebral subchondral bone. Osteoporos int 23(Suppl 8):S857–S860. https://doi.org/10.1007/s00198-012-2164-x

    Article  Google Scholar 

  10. Huang B, Liu J, Wei X et al (2021) Damage to the human lumbar cartilage endplate and its clinical implications. J Anat 238(2):338–348. https://doi.org/10.1111/joa.13321

    Article  CAS  Google Scholar 

  11. Molinos M, Almeida CR, Caldeira J et al (2015) Inflammation in intervertebral disc degeneration and regeneration. J Royal Soc Interface 12(108):20150429. https://doi.org/10.1098/rsif.2015.0429

    Article  Google Scholar 

  12. Sander AL, Lehnert LH, T, et al (2013) A clinically useful classification of traumatic intervertebral disk lesions. Am J Roentgenol 200(3):618–623. https://doi.org/10.2214/AJR.12.8748

    Article  Google Scholar 

  13. Wang Y, Videman T, Battié MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine 37(17):1432–1439. https://doi.org/10.1097/BRS.0b013e31824dd20a

    Article  Google Scholar 

  14. Abdollah V, Parent EC, Battié MC (2019) Reliability and validity of lumbar disc height quantification methods using magnetic resonance images. Biomedizinische Technik Biomed Eng 64(1):111–117. https://doi.org/10.1515/bmt-2017-0086

    Article  Google Scholar 

  15. Videman T, Gibbons LE, Battié MC (2008) Age- and pathology-specific measures of disc degeneration. Spine 33(25):2781–2788. https://doi.org/10.1097/BRS.0b013e31817e1d11

    Article  Google Scholar 

  16. Pachowsky ML, Kleyer A, Wegener L et al (2020) Quantitative T2 mapping shows increased degeneration in adjacent intervertebral discs following kyphoplasty. Cartilage 11(2):152–159. https://doi.org/10.1177/1947603518758434

    Article  CAS  Google Scholar 

  17. Modic MT, Steinberg PM, Ross JS et al (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199. https://doi.org/10.1148/radiology.166.1.3336678

    Article  CAS  Google Scholar 

  18. Emch TM, Modic MT (2011) Imaging of lumbar degenerative disk disease: history and current state. Skeletal Radiol 40(9):1175–1189. https://doi.org/10.1007/s00256-011-1163-x

    Article  Google Scholar 

  19. Chen L, Battié MC, Yuan Y et al (2020) Lumbar vertebral endplate defects on magnetic resonance images: prevalence, distribution patterns, and associations with back pain. The Spine J 20(3):352–360. https://doi.org/10.1016/j.spinee.2019.10.015

    Article  CAS  Google Scholar 

  20. Brayda-Bruno M, Albano D, Cannella G et al (2018) Endplate lesions in the lumbar spine: a novel MRI-based classification scheme and epidemiology in low back pain patients. Eur Spine J 27(11):2854–2861. https://doi.org/10.1007/s00586-018-5787-6

    Article  Google Scholar 

  21. Samartzis D, Mok F, Karppinen J et al (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthritis Cartilage 24(10):1753–1760. https://doi.org/10.1016/j.joca.2016.04.020

    Article  CAS  Google Scholar 

  22. Duran S, Cavusoglu M, Hatipoglu HG et al (2017) Association between measures of vertebral endplate morphology and lumbar intervertebral disc degeneration. Can Assoc Radiol J 68(2):210–216. https://doi.org/10.1016/j.carj.2016.11.002

    Article  Google Scholar 

  23. Teichtahl AJ, Finnin MA, Wang Y et al (2017) The natural history of Modic changes in a community-based cohort. Joint Bone Spine 84(2):197–202. https://doi.org/10.1016/j.jbspin.2016.03.011

    Article  Google Scholar 

  24. Jensen TS, Kjaer P, Korsholm L et al (2010) Predictors of new vertebral endplate signal (Modic) changes in the general population. Eur spine J 19(1):129–135. https://doi.org/10.1007/s00586-009-1184-5

    Article  Google Scholar 

  25. Kokkonen SM, Kurunlahti M, Tervonen O et al (2002) Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine 27(20):2274–2278. https://doi.org/10.1097/00007632-200210150-00017

    Article  Google Scholar 

  26. Holm S, Holm AK, Ekström L et al (2004) Experimental disc degeneration due to endplate injury. J spinal disord tech 17(1):64–71. https://doi.org/10.1097/00024720-200402000-00012

    Article  Google Scholar 

  27. Zhang JF, Wang GL, Zhou ZJ et al (2018) Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, and interleukins in vertebral cartilage endplate. Orthop Surg 10(4):306–311. https://doi.org/10.1111/os.12409

    Article  Google Scholar 

  28. Kjaer P, Leboeuf-Yde C, Korsholm L et al (2005) Magnetic resonance imaging and low back pain in adults: a diagnostic imaging study of 40-year-old men and women. Spine 30(10):1173–1180. https://doi.org/10.1097/01.brs.0000162396.97739.76

    Article  Google Scholar 

  29. Verlaan JJ, Dhert WJ, Oner FC (2013) Intervertebral disc viability after burst fractures of the thoracic and lumbar spine treated with pedicle screw fixation and direct end-plate restoration. The Spine J 13(3):217–221. https://doi.org/10.1016/j.spinee.2012.02.032

    Article  Google Scholar 

  30. Videman T, Battié MC, Gibbons LE et al (2003) Associations between back pain history and lumbar MRI findings. Spine 28(6):582–588. https://doi.org/10.1097/01.BRS.0000049905.44466.73

    Article  Google Scholar 

  31. Bailey JF, Fields AJ, Ballatori A et al (2019) The relationship between endplate pathology and patient-reported symptoms for chronic low back pain depends on lumbar paraspinal muscle quality. Spine 44(14):1010–1017. https://doi.org/10.1097/BRS.0000000000003035

    Article  Google Scholar 

  32. Luoma K, Vehmas T, Kerttula L et al (2016) Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J 25(9):2873–2881. https://doi.org/10.1007/s00586-016-4715-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Wang.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Ren, D., Chen, Y. et al. Effect of endplate reduction on endplate healing morphology and intervertebral disc degeneration in patients with thoracolumbar vertebral fracture. Eur Spine J 32, 55–67 (2023). https://doi.org/10.1007/s00586-022-07215-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-022-07215-w

Keywords

Navigation