Skip to main content

Predictive value of single-nucleotide polymorphisms in curve progression of adolescent idiopathic scoliosis

Abstract

Purpose

Genetic diagnosis is a promising approach because several single-nucleotide polymorphisms (SNPs) associated with adolescent idiopathic scoliosis (AIS) progression have been reported. We review the predictive value of SNPs in curve progression of adolescent idiopathic scoliosis.

Methods

We reviewed DNA-based prognostic testing to predict curve progression. Then, the multiple polymorphisms in loci related to AIS progression were also reviewed, and we elucidated the predictive value of SNPs from four functional perspectives, including endocrine metabolism, neuromuscular system, cartilage and extracellular matrix, enzymes, and cytokines.

Results

The ScoliScores were less successful predictors than expected, and the weak power of predictive SNPs might account for its failure. Susceptibility loci in ESR1, ESR2, GPER, and IGF1, which related to endocrine metabolism, have been reported to predict AIS progression. Neuromuscular imbalance might be a potential mechanism of scoliosis, and SNPs in LBX1, NTF3, and SOCS3 have been reported to predict the curve progression of AIS. Susceptibility loci in SOX9, MATN1, AJAP1, MMP9, and TIMP2, which are related to cartilage and extracellular matrix, are also potentially related to AIS progression. Enzymes and cytokines play essential roles in regulating bone metabolism and embryonic development. SNPs in BNC2, SLC39A8, TGFB1, IL-6, IL-17RC, and CHD7 were suggested as predictive loci for AIS curve progression.

Conclusions

Many promising SNPs have been identified to predict the curve progression of AIS. However, conflicting results from replication studies and different ethnic groups hamper their reliability. Convincing SNPs from multiethnic populations and functional verification are needed.

This is a preview of subscription content, access via your institution.

References

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet 371(9623):1527–1537. https://doi.org/10.1016/S0140-6736(08)60658-3

    Article  PubMed  Google Scholar 

  2. Lonstein JE (1994) Adolescent idiopathic scoliosis. Lancet 344(8934):1407–1412. https://doi.org/10.1016/s0140-6736(94)90572-x

    CAS  Article  PubMed  Google Scholar 

  3. Cheng JC, Castelein RM, Chu WC, Danielsson AJ, Dobbs MB, Grivas TB, Gurnett CA, Luk KD, Moreau A, Newton PO, Stokes IA, Weinstein SL, Burwell RG (2015) Adolescent idiopathic scoliosis. Nat Rev Dis Primers 1:15030. https://doi.org/10.1038/nrdp.2015.30

    Article  PubMed  Google Scholar 

  4. Bartley CE, Yaszay B, Bastrom TP, Shah SA, Lonner BS, Asghar J, Miyanji F, Samdani A, Newton PO (2017) Perioperative and delayed major complications following surgical treatment of adolescent idiopathic scoliosis. J Bone Joint Surg Am 99(14):1206–1212. https://doi.org/10.2106/JBJS.16.01331

    Article  PubMed  Google Scholar 

  5. De la Garza RR, Goodwin CR, Abu-Bonsrah N, Jain A, Miller EK, Huang N, Kebaish KM, Sponseller PD, Sciubba DM (2016) Patient and operative factors associated with complications following adolescent idiopathic scoliosis surgery: an analysis of 36,335 patients from the Nationwide Inpatient Sample. J Neurosurg Pediatr 25(6):730–736. https://doi.org/10.3171/2016.6.PEDS16200

    Article  Google Scholar 

  6. Lonstein JE (2006) Scoliosis: surgical versus nonsurgical treatment. Clin Orthop Relat Res 443:248–259. https://doi.org/10.1097/01.blo.0000198725.54891.73

    Article  PubMed  Google Scholar 

  7. Weinstein SL, Dolan LA, Wright JG, Dobbs MB (2013) Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369(16):1512–1521. https://doi.org/10.1056/NEJMoa1307337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Agabegi SS, Kazemi N, Sturm PF, Mehlman CT (2015) Natural history of adolescent idiopathic scoliosis in skeletally mature patients: a critical review. J Am Acad Orthop Surg 23(12):714–723. https://doi.org/10.5435/JAAOS-D-14-00037

    Article  PubMed  Google Scholar 

  9. Weinstein SL, Ponseti IV (1983) Curve progression in idiopathic scoliosis. J Bone Joint Surg Am 65(4):447–455

    CAS  Article  PubMed  Google Scholar 

  10. Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66(7):1061–1071

    CAS  Article  PubMed  Google Scholar 

  11. Schiller JR, Thakur NA, Eberson CP (2010) Brace management in adolescent idiopathic scoliosis. Clin Orthop Relat Res 468(3):670–678. https://doi.org/10.1007/s11999-009-0884-9

    Article  PubMed  Google Scholar 

  12. Cheung JP, Samartzis D, Cheung PW, Leung KH, Cheung KM, Luk KD (2015) The distal radius and ulna classification in assessing skeletal maturity: a simplified scheme and reliability analysis. J Pediatr Orthop B 24(6):546–551. https://doi.org/10.1097/BPB.0000000000000214

    Article  PubMed  Google Scholar 

  13. Cheung JP, Cheung PW, Samartzis D, Cheung KM, Luk KD (2016) The use of the distal radius and ulna classification for the prediction of growth: peak growth spurt and growth cessation. Bone Joint J 98-B(12):1689–1696. https://doi.org/10.1302/0301-620X.98B12.BJJ-2016-0158.R1

    CAS  Article  PubMed  Google Scholar 

  14. Luk KD, Saw LB, Grozman S, Cheung KM, Samartzis D (2014) Assessment of skeletal maturity in scoliosis patients to determine clinical management: a new classification scheme using distal radius and ulna radiographs. Spine J 14(2):315–325. https://doi.org/10.1016/j.spinee.2013.10.045

    Article  PubMed  Google Scholar 

  15. Cheung J, Cheung P, Samartzis D, Luk KD (2018) APSS-ASJ Best clinical research award: predictability of curve progression in adolescent idiopathic scoliosis using the distal radius and ulna classification. Asian Spine J 12(2):202–213. https://doi.org/10.4184/asj.2018.12.2.202

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hung A, Chau WW, Shi B, Chow SK, Yu F, Lam TP, Ng B, Qiu Y, Cheng J (2017) Thumb Ossification Composite Index (TOCI) for predicting peripubertal skeletal maturity and peak height velocity in idiopathic scoliosis: a validation study of premenarchal girls with adolescent idiopathic scoliosis followed longitudinally until Skeletal maturity. J Bone Joint Surg Am 99(17):1438–1446. https://doi.org/10.2106/JBJS.16.01078

    Article  PubMed  Google Scholar 

  17. Hung AL, Shi B, Chow SK, Chau WW, Hung VW, Wong RM, Liu KL, Lam TP, Ng BK, Cheng JC (2018) Validation study of the Thumb Ossification Composite Index (TOCI) in idiopathic scoliosis: a stage-to-stage correlation with classic tanner-whitehouse and sanders simplified skeletal maturity systems. J Bone Joint Surg Am 100(13):88. https://doi.org/10.2106/JBJS.17.01271

    Article  PubMed  Google Scholar 

  18. Kindsfater K, Lowe T, Lawellin D, Weinstein D, Akmakjian J (1994) Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am 76(8):1186–1192. https://doi.org/10.2106/00004623-199408000-00009

    CAS  Article  PubMed  Google Scholar 

  19. Lowe T, Lawellin D, Smith D, Price C, Haher T, Merola A, O’Brien M (2002) Platelet calmodulin levels in adolescent idiopathic scoliosis: Do the levels correlate with curve progression and severity? Spine 27(7):768–775. https://doi.org/10.1097/00007632-200204010-00016 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  20. Lowe TG, Burwell RG, Dangerfield PH (2004) Platelet calmodulin levels in adolescent idiopathic scoliosis (AIS): Can they predict curve progression and severity? Summary of an electronic focus group debate of the IBSE. Eur Spine J 13(3):257–265. https://doi.org/10.1007/s00586-003-0655-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Machida M, Dubousset J, Yamada T, Kimura J (2009) Serum melatonin levels in adolescent idiopathic scoliosis prediction and prevention for curve progression—A prospective study. J Pineal Res 46(3):344–348. https://doi.org/10.1111/j.1600-079X.2009.00669.x

    CAS  Article  PubMed  Google Scholar 

  22. Wang B, Chen ZJ, Qiu Y, Liu WJ (2009) Decreased circulating matrilin-1 levels in adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47(21):1638–1641

    PubMed  Google Scholar 

  23. Kulis A, Gozdzialska A, Drag J, Jaskiewicz J, Knapik-Czajka M, Lipik E, Zarzycki D (2015) Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int Orthop 39(6):1227–1236. https://doi.org/10.1007/s00264-015-2742-6

    Article  PubMed  Google Scholar 

  24. Yu HG, Zhang HQ, Zhou ZH, Wang YJ (2018) High ghrelin level predicts the curve progression of adolescent idiopathic scoliosis girls. Biomed Res Int 2018:9784083. https://doi.org/10.1155/2018/9784083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hart JR, Johnson MD, Barton JK (2004) Single-nucleotide polymorphism discovery by targeted DNA photocleavage. Proc Natl Acad Sci U S A 101(39):14040–14044. https://doi.org/10.1073/pnas.0406169101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Takahashi Y, Kou I, Takahashi A, Johnson TA, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Hosono N, Kamatani N, Tsunoda T, Toyama Y, Kubo M, Matsumoto M, Ikegawa S (2011) A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 43(12):1237–1240. https://doi.org/10.1038/ng.974

    CAS  Article  PubMed  Google Scholar 

  27. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, Qiu X, Sharma S, Takimoto A, Ogura Y, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Londono D, Gordon D, Herring JA, Watanabe K, Chiba K, Kamatani N, Jiang Q, Hiraki Y, Kubo M, Toyama Y, Tsunoda T, Wise CA, Qiu Y, Shukunami C, Matsumoto M, Ikegawa S (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679. https://doi.org/10.1038/ng.2639

    CAS  Article  PubMed  Google Scholar 

  28. Zhu Z, Tang NL, Xu L, Qin X, Mao S, Song Y, Liu L, Li F, Liu P, Yi L, Chang J, Jiang L, Ng BK, Shi B, Zhang W, Qiao J, Sun X, Qiu X, Wang Z, Wang F, Xie D, Chen L, Chen Z, Jin M, Han X, Hu Z, Zhang Z, Liu Z, Zhu F, Qian BP, Yu Y, Wang B, Lee KM, Lee W, Lam TP, Qiu Y, Cheng JC (2015) Genome-wide association study identifies new susceptibility loci for adolescent idiopathic scoliosis in Chinese girls. Nat Commun 6:8355. https://doi.org/10.1038/ncomms9355

    CAS  Article  PubMed  Google Scholar 

  29. Sharma S, Londono D, Eckalbar WL, Gao X, Zhang D, Mauldin K, Kou I, Takahashi A, Matsumoto M, Kamiya N, Murphy KK, Cornelia R, Herring JA, Burns D, Ahituv N, Ikegawa S, Gordon D, Wise CA (2015) A PAX1 enhancer locus is associated with susceptibility to idiopathic scoliosis in females. Nat Commun 6:6452. https://doi.org/10.1038/ncomms7452

    CAS  Article  PubMed  Google Scholar 

  30. Kou I, Otomo N, Takeda K, Momozawa Y, Lu HF, Kubo M, Kamatani Y, Ogura Y, Takahashi Y, Nakajima M, Minami S, Uno K, Kawakami N, Ito M, Yonezawa I, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Sato T, Inami S, Matsumoto M, Terao C, Watanabe K, Ikegawa S (2019) Genome-wide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat Commun 10(1):3685. https://doi.org/10.1038/s41467-019-11596-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Man GC, Tang NL, Chan TF, Lam TP, Li JW, Ng BK, Zhu Z, Qiu Y, Cheng JC (2019) Replication study for the association of GWAS-associated loci with adolescent idiopathic scoliosis susceptibility and curve progression in a Chinese population. Spine 44(7):464–471. https://doi.org/10.1097/BRS.0000000000002866 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  32. Takahashi Y, Kou I, Ogura Y, Miyake A, Takeda K, Nakajima M, Minami S, Kawakami N, Uno K, Ito M, Yonezawa I, Kaito T, Yanagida H, Watanabe K, Taneichi H, Harimaya K, Taniguchi Y, Kotani T, Tsuji T, Suzuki T, Sudo H, Fujita N, Yagi M, Chiba K, Kono K, Sakuma T, Akazawa T, Nishida K, Kakutani K, Shigematsu H, Iida T, Demura S, Hosogane N, Okada E, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S (2018) A replication study for the association of rs11190870 with curve severity in adolescent idiopathic scoliosis in Japanese. Spine 43(10):688–692. https://doi.org/10.1097/BRS.0000000000002413 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  33. Chang K, Deng S, Chen M (2015) Novel biosensing methodologies for improving the detection of single nucleotide polymorphism. Biosens Bioelectron 66:297–307. https://doi.org/10.1016/j.bios.2014.11.041

    CAS  Article  PubMed  Google Scholar 

  34. Sanders JO, Browne RH, McConnell SJ, Margraf SA, Cooney TE, Finegold DN (2007) Maturity assessment and curve progression in girls with idiopathic scoliosis. J Bone Joint Surg Am 89(1):64–73. https://doi.org/10.2106/JBJS.F.00067

    Article  PubMed  Google Scholar 

  35. Sanders JO, Khoury JG, Kishan S, Browne RH, Mooney JR, Arnold KD, McConnell SJ, Bauman JA, Finegold DN (2008) Predicting scoliosis progression from skeletal maturity: a simplified classification during adolescence. J Bone Joint Surg Am 90(3):540–553. https://doi.org/10.2106/JBJS.G.00004

    Article  PubMed  Google Scholar 

  36. Sitoula P, Verma K, Holmes LJ, Gabos PG, Sanders JO, Yorgova P, Neiss G, Rogers K, Shah SA (2015) Prediction of curve progression in idiopathic scoliosis: validation of the sanders skeletal maturity staging system. Spine 40(13):1006–1013. https://doi.org/10.1097/BRS.0000000000000952 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  37. Neal KM, Shirley ED, Kiebzak GM (2018) Maturity indicators and adolescent idiopathic scoliosis: evaluation of the sanders maturity scale. Spine 43(7):E406–E412. https://doi.org/10.1097/BRS.0000000000002483 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  38. Ward K, Ogilvie JW, Singleton MV, Chettier R, Engler G, Nelson LM (2010) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine 35(25):E1455–E1464. https://doi.org/10.1097/BRS.0b013e3181ed2de1 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  39. Ogilvie J (2010) Adolescent idiopathic scoliosis and genetic testing. Curr Opin Pediatr 22(1):67–70. https://doi.org/10.1097/MOP.0b013e32833419ac

    Article  PubMed  Google Scholar 

  40. Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, Chong HS (2013) Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J 54(2):500–509. https://doi.org/10.3349/ymj.2013.54.2.500

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Grant SF, Dormans JP, Ward K, Ogilvie JW, Singleton et al (2011) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine 36(15):1258–1259 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  42. Dobbs MB, Gurnett CA, Ward K, Ogilvie JW, Singleton MV et al (2011) Validation of DNA-based prognostic testing to predict spinal curve progression in adolescent idiopathic scoliosis. Spine 36(15):1257. https://doi.org/10.1097/BRS.0b013e31821987ba (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  43. Ogura Y, Takahashi Y, Kou I, Nakajima M, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Yonezawa I, Tsuji T, Suzuki T, Sudo H, Kotani T, Watanabe K, Chiba K, Toyama Y, Matsumoto M, Ikegawa S (2013) A replication study for association of 5 single nucleotide polymorphisms with curve progression of adolescent idiopathic scoliosis in Japanese patients. Spine 38(7):571–575. https://doi.org/10.1097/BRS.0b013e3182761535 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  44. Roye BD, Wright ML, Matsumoto H, Yorgova P, McCalla D, Hyman JE, Roye DP, Shah SA, Vitale MG (2015) An independent evaluation of the validity of a DNA-based prognostic test for adolescent idiopathic scoliosis. J Bone Joint Surg Am 97(24):1994–1998. https://doi.org/10.2106/JBJS.O.00217

    Article  PubMed  Google Scholar 

  45. Tang QL, Julien C, Eveleigh R, Bourque G, Franco A, Labelle H, Grimard G, Parent S, Ouellet J, Mac-Thiong JM, Gorman KF, Moreau A (2015) A replication study for association of 53 single nucleotide polymorphisms in ScoliScore test with adolescent idiopathic scoliosis in French-Canadian population. Spine 40(8):537–543. https://doi.org/10.1097/BRS.0000000000000807 (Phila Pa 1976)

    CAS  Article  PubMed  Google Scholar 

  46. Xu L, Qin X, Sun W, Qiao J, Qiu Y, Zhu Z (2016) Replication of association between 53 single-nucleotide polymorphisms in a DNA-based diagnostic test and AIS progression in Chinese han population. Spine 41(4):306–310. https://doi.org/10.1097/BRS.0000000000001203 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  47. Otomo N, Lu HF, Koido M, Kou I, Takeda K, Momozawa Y, Kubo M, Kamatani Y, Ogura Y, Takahashi Y, Nakajima M, Minami S, Uno K, Kawakami N, Ito M, Sato T, Watanabe K, Kaito T, Yanagida H, Taneichi H, Harimaya K, Taniguchi Y, Shigematsu H, Iida T, Demura S, Sugawara R, Fujita N, Yagi M, Okada E, Hosogane N, Kono K, Nakamura M, Chiba K, Kotani T, Sakuma T, Akazawa T, Suzuki T, Nishida K, Kakutani K, Tsuji T, Sudo H, Iwata A, Kaneko K, Inami S, Kochi Y, Chang WC, Matsumoto M, Watanabe K, Ikegawa S, Terao C (2021) Polygenic risk score of adolescent idiopathic scoliosis for potential clinical use. J Bone Miner Res 36(8):1481–1491. https://doi.org/10.1002/jbmr.4324

    CAS  Article  PubMed  Google Scholar 

  48. Zheng S, Zhou H, Gao B, Li Y, Liao Z, Zhou T, Lian C, Wu Z, Su D, Wang T, Su P, Xu C (2018) Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model. Exp Mol Med 50(11):1–11. https://doi.org/10.1038/s12276-018-0161-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Girardo M, Bettini N, Dema E, Cervellati S (2011) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J 20(Suppl 1):S68–S74. https://doi.org/10.1007/s00586-011-1750-5

    Article  PubMed  Google Scholar 

  50. Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, Takaso M, Tokunaga M, Nishikawa S, Maruta T, Moriya H (2002) Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine 27(21):2357–2362. https://doi.org/10.1097/00007632-200211010-00009 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  51. Wu J, Qiu Y, Zhang L, Sun Q, Qiu X, He Y (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine 31(10):1131–1136. https://doi.org/10.1097/01.brs.0000216603.91330.6f (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  52. Tang NL, Yeung HY, Lee KM, Hung VW, Cheung CS, Ng BK, Kwok R, Guo X, Qin L, Cheng JC (2006) A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine 31(21):2463–2468. https://doi.org/10.1097/01.brs.0000239179.81596.2b (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  53. Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S (2011) Replication study of the association between adolescent idiopathic scoliosis and two estrogen receptor genes. J Orthop Res 29(6):834–837. https://doi.org/10.1002/jor.21322

    CAS  Article  PubMed  Google Scholar 

  54. Janusz P, Kotwicki T, Andrusiewicz M, Kotwicka M (2013) XbaI and PvuII polymorphisms of estrogen receptor 1 gene in females with idiopathic scoliosis: no association with occurrence or clinical form. PLoS ONE 8(10):e76806. https://doi.org/10.1371/journal.pone.0076806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang HQ, Lu SJ, Tang MX, Chen LQ, Liu SH, Guo CF, Wang XY, Chen J, Xie L (2009) Association of estrogen receptor beta gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine 34(8):760–764. https://doi.org/10.1097/BRS.0b013e31818ad5ac (Phila Pa 1976)

    CAS  Article  PubMed  Google Scholar 

  56. Kotwicki T, Janusz P, Andrusiewicz M, Chmielewska M, Kotwicka M (2014) Estrogen receptor 2 gene polymorphism in idiopathic scoliosis. Spine 39(26):E1599–E1607. https://doi.org/10.1097/BRS.0000000000000643 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  57. Zhao L, Roffey DM, Chen S (2017) Association between the estrogen receptor beta (ESR2) Rs1256120 single nucleotide polymorphism and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Spine 42(11):871–878. https://doi.org/10.1097/BRS.0000000000001932 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  58. Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P (2012) Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop 36(3):671–677. https://doi.org/10.1007/s00264-011-1374-8

    Article  PubMed  Google Scholar 

  59. Ogura Y, Kou I, Takahashi Y, Takeda K, Minami S, Kawakami N, Uno K, Ito M, Yonezawa I, Kaito T, Yanagida H, Watanabe K, Taneichi H, Harimaya K, Taniguchi Y, Kotani T, Tsuji T, Suzuki T, Sudo H, Fujita N, Yagi M, Chiba K, Kubo M, Kamatani Y, Nakamura M, Matsumoto M, Watanabe K, Ikegawa S (2017) A functional variant in MIR4300HG, the host gene of microRNA MIR4300 is associated with progression of adolescent idiopathic scoliosis. Hum Mol Genet 26(20):4086–4092. https://doi.org/10.1093/hmg/ddx291

    CAS  Article  PubMed  Google Scholar 

  60. Perry JR, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, He C, Chasman DI, Esko T, Thorleifsson G, Albrecht E, Ang WQ, Corre T, Cousminer DL, Feenstra B, Franceschini N, Ganna A, Johnson AD, Kjellqvist S, Lunetta KL, McMahon G, Nolte IM, Paternoster L, Porcu E, Smith AV, Stolk L, Teumer A, Tsernikova N, Tikkanen E, Ulivi S, Wagner EK, Amin N, Bierut LJ, Byrne EM, Hottenga JJ, Koller DL, Mangino M, Pers TH, Yerges-Armstrong LM, Zhao JH, Andrulis IL, Anton-Culver H, Atsma F, Bandinelli S, Beckmann MW, Benitez J, Blomqvist C, Bojesen SE, Bolla MK, Bonanni B, Brauch H, Brenner H, Buring JE, Chang-Claude J, Chanock S, Chen J, Chenevix-Trench G, Collee JM, Couch FJ, Couper D, Coveillo AD, Cox A, Czene K, D’Adamo AP, Smith GD, De Vivo I, Demerath EW, Dennis J, Devilee P, Dieffenbach AK, Dunning AM, Eiriksdottir G, Eriksson JG, Fasching PA, Ferrucci L, Flesch-Janys D, Flyger H, Foroud T, Franke L, Garcia ME, Garcia-Closas M, Geller F, de Geus EE, Giles GG, Gudbjartsson DF, Gudnason V, Guenel P, Guo S, Hall P, Hamann U, Haring R, Hartman CA, Heath AC, Hofman A, Hooning MJ, Hopper JL, Hu FB, Hunter DJ, Karasik D, Kiel DP, Knight JA, Kosma VM, Kutalik Z, Lai S, Lambrechts D, Lindblom A, Magi R, Magnusson PK, Mannermaa A, Martin NG, Masson G, McArdle PF, McArdle WL, Melbye M, Michailidou K, Mihailov E, Milani L, Milne RL, Nevanlinna H, Neven P, Nohr EA, Oldehinkel AJ, Oostra BA, Palotie A, Peacock M, Pedersen NL, Peterlongo P, Peto J, Pharoah PD, Postma DS, Pouta A, Pylkas K, Radice P, Ring S, Rivadeneira F, Robino A, Rose LM, Rudolph A, Salomaa V, Sanna S, Schlessinger D, Schmidt MK, Southey MC, Sovio U, Stampfer MJ, Stockl D, Storniolo AM, Timpson NJ, Tyrer J, Visser JA, Vollenweider P, Volzke H, Waeber G, Waldenberger M, Wallaschofski H, Wang Q, Willemsen G, Winqvist R, Wolffenbuttel BH, Wright MJ, Boomsma DI, Econs MJ, Khaw KT, Loos RJ, McCarthy MI, Montgomery GW, Rice JP, Streeten EA, Thorsteinsdottir U, van Duijn CM, Alizadeh BZ, Bergmann S, Boerwinkle E, Boyd HA, Crisponi L, Gasparini P, Gieger C, Harris TB, Ingelsson E, Jarvelin MR, Kraft P, Lawlor D, Metspalu A, Pennell CE, Ridker PM, Snieder H, Sorensen TI, Spector TD, Strachan DP, Uitterlinden AG, Wareham NJ, Widen E, Zygmunt M, Murray A, Easton DF, Stefansson K, Murabito JM, Ong KK (2014) Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514(7520):92–97. https://doi.org/10.1038/nature13545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Xu L, Xia C, Sun W, Qin X, Qiu Y, Zhu Z (2017) Genetic polymorphism of NUCKS1 is associated with the susceptibility of adolescent idiopathic scoliosis. Spine 42(21):1629–1634. https://doi.org/10.1097/BRS.0000000000002167 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  62. Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, Lee KM, Ng TB, Qiu Y, Cheng JC, Yeung HY (2012) Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine 37(7):599–604. https://doi.org/10.1097/BRS.0b013e318227dd0c (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  63. Qiu LY (2009) P66. Lack of association between the -2548G/A polymorphism of leptin gene and adolescent idiopathic scoliosis. Spine J

  64. Liu Z, Wang F, Xu LL, Sha SF, Zhang W, Qiao J, Bao HD, Qiu Y, Jiang Q, Zhu ZZ (2015) Polymorphism of rs2767485 in leptin receptor gene is associated with the occurrence of adolescent idiopathic scoliosis. Spine 40(20):1593–1598. https://doi.org/10.1097/BRS.0000000000001095 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  65. Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, Guo X, Qin L, Cheng JC (2006) Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform 123:18–24

    CAS  PubMed  Google Scholar 

  66. Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, Tsuji T, Uno K, Suzuki T, Ito M, Sudo H, Minami S, Kotani T, Kono K, Yanagida H, Taneichi H, Takahashi A, Toyama Y, Ikegawa S (2011) Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res 29(7):1055–1058. https://doi.org/10.1002/jor.21347

    CAS  Article  PubMed  Google Scholar 

  67. Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov AS, Kremensky IM (2015) Association study between idiopathic scoliosis and polymorphic variants of VDR, IGF-1, and AMPD1 genes. Genet Res Int 2015:852196. https://doi.org/10.1155/2015/852196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Letellier K, Azeddine B, Parent S, Labelle H, Rompre PH, Moreau A, Moldovan F (2008) Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res 45(4):383–393. https://doi.org/10.1111/j.1600-079X.2008.00603.x

    CAS  Article  PubMed  Google Scholar 

  69. Qiu XS, Tang NL, Yeung HY, Cheng JC, Qiu Y (2008) Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine 33(20):2204–2207. https://doi.org/10.1097/BRS.0b013e31817e0424 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  70. Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, Ma SL, Kwok RH, Qin L, Qiu Y, Cheng JC (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine 32(16):1748–1753. https://doi.org/10.1097/BRS.0b013e3180b9f0ff (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  71. Xu L, Qiu X, Sun X, Mao S, Liu Z, Qiao J, Qiu Y (2011) Potential genetic markers predicting the outcome of brace treatment in patients with adolescent idiopathic scoliosis. Eur Spine J 20(10):1757–1764. https://doi.org/10.1007/s00586-011-1874-7

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Wu Z, Zhuang Q, Fei Q, Zhang J, Liu Y, Wang Y, Ding Y, Qiu G (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine 33(20):2199–2203. https://doi.org/10.1097/BRS.0b013e31817c03f9 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  73. Jiang H, Yang F, Lin T, Shao W, Meng Y, Ma J, Wang C, Gao R, Zhou X (2018) Asymmetric expression of H19 and ADIPOQ in concave/convex paravertebral muscles is associated with severe adolescent idiopathic scoliosis. Mol Med 24(1):48. https://doi.org/10.1186/s10020-018-0049-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M (2019) Muscular contribution to adolescent idiopathic scoliosis from the perspective of stem cell-based regenerative medicine. Stem Cells Dev 28(16):1059–1077. https://doi.org/10.1089/scd.2019.0073

    Article  PubMed  Google Scholar 

  75. Yeung KH, Man G, Shi L, Hui S, Chiyanika C, Lam TP, Ng B, Cheng J, Chu W (2019) Magnetic resonance imaging-based morphological change of paraspinal muscles in girls with adolescent idiopathic scoliosis. Spine 44(19):1356–1363. https://doi.org/10.1097/BRS.0000000000003078 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  76. Chen Z, Qiu Y, Ma W, Qian B, Zhu Z (2014) Comparison of somatosensory evoked potentials between adolescent idiopathic scoliosis and congenital scoliosis without neural axis abnormalities. Spine J 14(7):1095–1098. https://doi.org/10.1016/j.spinee.2013.07.465

    Article  PubMed  Google Scholar 

  77. Lao ML, Chow DH, Guo X, Cheng JC, Holmes AD (2008) Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop 28(8):846–849. https://doi.org/10.1097/BPO.0b013e31818e1bc9

    Article  PubMed  Google Scholar 

  78. Fortin C, Pialasse JP, Knoth IS, Lippe S, Duclos C, Simoneau M (2019) Cortical dynamics of sensorimotor information processing associated with balance control in adolescents with and without idiopathic scoliosis. Clin Neurophysiol 130(10):1752–1761. https://doi.org/10.1016/j.clinph.2019.07.005

    Article  PubMed  Google Scholar 

  79. Blecher R, Krief S, Galili T, Biton IE, Stern T, Assaraf E, Levanon D, Appel E, Anekstein Y, Agar G, Groner Y, Zelzer E (2017) The proprioceptive system masterminds spinal alignment: insight into the mechanism of scoliosis. Dev Cell 42(4):388–399. https://doi.org/10.1016/j.devcel.2017.07.022

    CAS  Article  PubMed  Google Scholar 

  80. Satoh D, Pudenz C, Arber S (2016) Context-dependent gait choice elicited by Epha4 mutation in Lbx1 spinal interneurons. Neuron 89(5):1046–1058. https://doi.org/10.1016/j.neuron.2016.01.033

    CAS  Article  PubMed  Google Scholar 

  81. Jiang H, Qiu X, Dai J, Yan H, Zhu Z, Qian B, Qiu Y (2013) Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur Spine J 22(2):282–286

    Article  PubMed  Google Scholar 

  82. Gao W, Peng Y, Liang G, Liang A, Ye W, Zhang L, Sharma S, Su P, Huang D (2013) Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS ONE 8(1):e53234. https://doi.org/10.1371/journal.pone.0053234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Tourtellotte WG, Milbrandt J (1998) Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3. Nat Genet 20(1):87–91. https://doi.org/10.1038/1757

    CAS  Article  PubMed  Google Scholar 

  84. Qiu Y, Mao SH, Qian BP, Jiang J, Qiu XS, Zhao Q, Liu Z (2012) A promoter polymorphism of neurotrophin 3 gene is associated with curve severity and bracing effectiveness in adolescent idiopathic scoliosis. Spine 37(2):127–133. https://doi.org/10.1097/BRS.0b013e31823e5890 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  85. Sharma S, Gao X, Londono D, Devroy SE, Mauldin KN, Frankel JT, Brandon JM, Zhang D, Li QZ, Dobbs MB, Gurnett CA, Grant SF, Hakonarson H, Dormans JP, Herring JA, Gordon D, Wise CA (2011) Genome-wide association studies of adolescent idiopathic scoliosis suggest candidate susceptibility genes. Hum Mol Genet 20(7):1456–1466. https://doi.org/10.1093/hmg/ddq571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Wu W, Zhu Z, Mao S, Qiu X, Qian B, Liu Z, Qiu Y (2015) Lack of association between DSCAM gene polymorphisms and adolescent idiopathic scoliosis susceptibility in a Chinese Han population. J Back Musculoskelet Rehabil 28(4):681–687. https://doi.org/10.3233/BMR-140567

    Article  PubMed  Google Scholar 

  87. Capellini TD, Zewdu R, Di Giacomo G, Asciutti S, Kugler JE, Di Gregorio A, Selleri L (2008) Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev Biol 321(2):500–514. https://doi.org/10.1016/j.ydbio.2008.04.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Sonnesen L, Nolting D, Kjaer KW, Kjaer I (2008) Association between the development of the body axis and the craniofacial skeleton studied by immunohistochemical analyses using collagen II, Pax9, Pax1, and Noggin antibodies. Spine 33(15):1622–1626. https://doi.org/10.1097/BRS.0b013e31817b61d1 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  89. Xu L, Sheng F, Xia C, Qin X, Tang NL, Qiu Y, Cheng JC, Zhu Z (2018) Genetic variant of PAX1 gene is functionally associated with adolescent idiopathic scoliosis in the Chinese population. Spine 43(7):492–496. https://doi.org/10.1097/BRS.0000000000002475 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  90. Qiao J, Xiao L, Xu L, Qian B, Zhu Z, Qiu Y (2018) Genetic variant of SOCS3 gene is functionally associated with lumbar adolescent idiopathic scoliosis. Clin Spine Surg 31(3):E193–E196. https://doi.org/10.1097/BSD.0000000000000628

    Article  PubMed  Google Scholar 

  91. Zhu F, Qiao J, Qiu X, Xu L, Liu Z, Zhu Z, Qian B, Sun X, Qiu Y (2014) Lack of association between suppressor of cytokine signaling-3 gene polymorphism and susceptibility and curve severity of adolescent idiopathic scoliosis. Eur Spine J 23(11):2432–2436. https://doi.org/10.1007/s00586-014-3452-2

    Article  PubMed  Google Scholar 

  92. Haller G, Alvarado DM, Willing MC, Braverman AC, Bridwell KH, Kelly M, Lenke LG, Luhmann SJ, Gurnett CA, Dobbs MB (2015) Genetic risk for aortic aneurysm in adolescent idiopathic scoliosis. J Bone Joint Surg Am 97(17):1411–1417. https://doi.org/10.2106/JBJS.O.00290

    Article  PubMed  Google Scholar 

  93. Buchan JG, Alvarado DM, Haller GE, Cruchaga C, Harms MB, Zhang T, Willing MC, Grange DK, Braverman AC, Miller NH, Morcuende JA, Tang NL, Lam TP, Ng BK, Cheng JC, Dobbs MB, Gurnett CA (2014) Rare variants in FBN1 and FBN2 are associated with severe adolescent idiopathic scoliosis. Hum Mol Genet 23(19):5271–5282. https://doi.org/10.1093/hmg/ddu224

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Sheng F, Xia C, Xu L, Qin X, Tang NL, Qiu Y, Cheng JC, Zhu Z (2019) New evidence supporting the role of FBN1 in the development of adolescent idiopathic scoliosis. Spine 44(4):E225–E232. https://doi.org/10.1097/BRS.0000000000002809 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  95. Cao XB, Qiu Y, Qiu XS (2008) FBN3 gene polymorphisms in adolescent idiopathic scoliosis patients. Zhonghua Yi Xue Za Zhi 88(43):3053–3058

    CAS  PubMed  Google Scholar 

  96. Xu HG, Qiu GX, Wang YP, Zhang JG, Liu Y, Wu ZH (2009) Imaging study of wedge changes in the vertebral bodies and intervertebral discs in adolescent idiopathic scoliosis. Orthop Surg 1(4):300–304. https://doi.org/10.1111/j.1757-7861.2009.00044.x

    Article  PubMed  PubMed Central  Google Scholar 

  97. Will RE, Stokes IA, Qiu X, Walker MR, Sanders JO (2009) Cobb angle progression in adolescent scoliosis begins at the intervertebral disc. Spine 34(25):2782–2786. https://doi.org/10.1097/BRS.0b013e3181c11853 (Phila Pa 1976)

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lawson LY, Harfe BD (2017) Developmental mechanisms of intervertebral disc and vertebral column formation. Wiley Interdiscip Rev Dev Biol. https://doi.org/10.1002/wdev.283

    Article  PubMed  Google Scholar 

  99. Miyake A, Kou I, Takahashi Y, Johnson TA, Ogura Y, Dai J, Qiu X, Takahashi A, Jiang H, Yan H, Kono K, Kawakami N, Uno K, Ito M, Minami S, Yanagida H, Taneichi H, Hosono N, Tsuji T, Suzuki T, Sudo H, Kotani T, Yonezawa I, Kubo M, Tsunoda T, Watanabe K, Chiba K, Toyama Y, Qiu Y, Matsumoto M, Ikegawa S (2013) Identification of a susceptibility locus for severe adolescent idiopathic scoliosis on chromosome 17q24.3. Plos One 8(9):e72802. https://doi.org/10.1371/journal.pone.0072802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Lestner JM, Ellis R, Canham N (2012) Delineating the 17q24.2–q24.3 microdeletion syndrome phenotype. Eur J Med Genet 55(12):700–704. https://doi.org/10.1016/j.ejmg.2012.08.003

    Article  PubMed  Google Scholar 

  101. Takeda K, Kou I, Otomo N, Grauers A, Fan YH, Ogura Y, Takahashi Y, Momozawa Y, Einarsdottir E, Kere J, Matsumoto M, Qiu Y, Song YQ, Gerdhem P, Watanabe K, Ikegawa S (2019) A multiethnic meta-analysis defined the association of rs12946942 with severe adolescent idiopathic scoliosis. J Hum Genet 64(5):493–498. https://doi.org/10.1038/s10038-019-0575-7

    CAS  Article  PubMed  Google Scholar 

  102. Chen ZJ, Qiu Y, Yu Y, Wang B, Zhu ZZ (2009) Association between polymorphism of Matrilin-1 gene (MATN1) with susceptibility to adolescent idiopathic scoliosis. Zhonghua Wai Ke Za Zhi 47(17):1332–1335

    PubMed  Google Scholar 

  103. Yilmaz H, Zateri C, Uludag A, Bakar C, Kosar S, Ozdemir O (2012) Single-nucleotide polymorphism in Turkish patients with adolescent idiopathic scoliosis: curve progression is not related with MATN-1, LCT C/T-13910, and VDR BsmI. J Orthop Res 30(9):1459–1463. https://doi.org/10.1002/jor.22075

    CAS  Article  PubMed  Google Scholar 

  104. Huang DS, Liang GY, Su PQ (2011) Association of matrix metalloproteinase 9 polymorphisms with adolescent idiopathic scoliosis in Chinese Han female. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 28(5):532–535. https://doi.org/10.3760/cma.j.issn.1003-9406.2011.05.013

    CAS  Article  PubMed  Google Scholar 

  105. Nikolova ST, Yablanski VT, Vlaev EN, Stokov LD, Savov AS, Kremensky IM, Loukanov AR (2016) Association between IL-6 and MMP3 common genetic polymorphisms and idiopathic scoliosis in bulgarian patients: a case-control study. Spine 41(9):785–791. https://doi.org/10.1097/BRS.0000000000001360 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  106. Ocaka L, Zhao C, Reed JA, Ebenezer ND, Brice G, Morley T, Mehta M, O’Dowd J, Weber JL, Hardcastle AJ, Child AH (2008) Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J Med Genet 45(2):87–92. https://doi.org/10.1136/jmg.2007.051896

    CAS  Article  PubMed  Google Scholar 

  107. Jiang J, Qiu Y, Qian BP, Qiu XS, Liu Z, Mao SH, Zhao QH (2010) Association between tissue inhibitor of metalloproteinase-2 gene polymorphism and adolescent idiopathic thoracic scoliosis. Zhonghua Wai Ke Za Zhi 48(6):423–426

    PubMed  Google Scholar 

  108. Jiang J, Qian B, Mao S, Zhao Q, Qiu X, Liu Z, Qiu Y (2012) A promoter polymorphism of tissue inhibitor of metalloproteinase-2 gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine 37(1):41–47. https://doi.org/10.1097/BRS.0b013e31820e71e3 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  109. Andrusiewicz M, Harasymczuk P, Janusz P, Biecek P, Zbikowska A, Kotwicka M, Kotwicki T (2019) TIMP2 Polymorphisms association with curve initiation and progression of Thoracic Idiopathic Scoliosis in the caucasian females. J Orthop Res 37(10):2217–2225. https://doi.org/10.1002/jor.24380

    CAS  Article  PubMed  Google Scholar 

  110. Song XX, Jin LY, Li XF, Qian L, Shen HX, Liu ZD, Yu BW (2018) Effects of low bone mineral status on biomechanical characteristics in idiopathic scoliotic spinal deformity. World Neurosurg 110:e321–e329. https://doi.org/10.1016/j.wneu.2017.10.177

    Article  PubMed  Google Scholar 

  111. Newton EM, Jones SW (2016) Adolescent idiopathic scoliosis: evidence for intrinsic factors driving aetiology and progression. Int Orthop 40(10):2075–2080. https://doi.org/10.1007/s00264-016-3132-4

    Article  Google Scholar 

  112. Park JH, Hogrebe M, Gruneberg M, DuChesne I, von der Heiden AL, Reunert J, Schlingmann KP, Boycott KM, Beaulieu CL, Mhanni AA, Innes AM, Hortnagel K, Biskup S, Gleixner EM, Kurlemann G, Fiedler B, Omran H, Rutsch F, Wada Y, Tsiakas K, Santer R, Nebert DW, Rust S, Marquardt T (2015) SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 97(6):894–903. https://doi.org/10.1016/j.ajhg.2015.11.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Nebert DW, Liu Z (2019) SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum Genomics 13(Suppl 1):51. https://doi.org/10.1186/s40246-019-0233-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Haller G, McCall K, Jenkitkasemwong S, Sadler B, Antunes L, Nikolov M, Whittle J, Upshaw Z, Shin J, Baschal E, Cruchaga C, Harms M, Raggio C, Morcuende JA, Giampietro P, Miller NH, Wise C, Gray RS, Solnica-Krezel L, Knutson M, Dobbs MB, Gurnett CA (2018) A missense variant in SLC39A8 is associated with severe idiopathic scoliosis. Nat Commun 9(1):4171. https://doi.org/10.1038/s41467-018-06705-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Krela-Kazmierczak I, Michalak M, Wawrzyniak A, Szymczak A, Eder P, Lykowska-Szuber L, Kaczmarek-Rys M, Drweska-Matelska N, Skrzypczak-Zielinska M, Linke K, Slomski R (2017) The c.29T>C polymorphism of the transforming growth factor beta-1 (TGFB1) gene, bone mineral density and the occurrence of low-energy fractures in patients with inflammatory bowel disease. Mol Biol Rep 44(6):455–461. https://doi.org/10.1007/s11033-017-4131-2

    CAS  Article  PubMed  Google Scholar 

  116. Xu H, Qiu G, Wu Z, Wang Y, Zhang J, Liu Y, Yang X (2005) Expression of transforming growth factor and basic fibroblast growth factor and core protein of proteoglycan in human vertebral cartilaginous endplate of adolescent idiopathic scoliosis. Spine 30(17):1973–1978. https://doi.org/10.1097/01.brs.0000176445.01967.8a (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  117. Ryzhkov II, Borzilov EE, Churnosov MI, Ataman AV, Dedkov AA, Polonikov AV (2013) Transforming growth factor beta 1 is a novel susceptibility gene for adolescent idiopathic scoliosis. Spine 38(12):E699–E704. https://doi.org/10.1097/BRS.0b013e31828de9e1 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  118. Xu L, Sun W, Qin X, Qiu Y, Zhu Z (2016) The TGFB1 gene is associated with curve severity but not with the development of adolescent idiopathic scoliosis: a replication study in the Chinese population. BMC Musculoskelet Disord 17:15. https://doi.org/10.1186/s12891-016-0863-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Nikolova S, Dikova M, Dikov D, Djerov A, Dzhebir G, Atanasov V, Savov A, Kremensky I (2015) Role of the IL-6 gene in the etiopathogenesis of idiopathic scoliosis. Anal Cell Pathol (Amst) 2015:621893. https://doi.org/10.1155/2015/621893

    CAS  Article  Google Scholar 

  120. Dormans JP, Grant SF, Sampson NR, Chiavacci R, Hakonarson H (2011) A genome wide association study identifies IL17RC as an adolescent idiopathic scoliosis locus: PAPER #80: Spine Journal Meeting Abstracts[Z]

  121. Zhou S, Qiu XS, Zhu ZZ, Wu WF, Liu Z, Qiu Y (2012) A single-nucleotide polymorphism rs708567 in the IL-17RC gene is associated with a susceptibility to and the curve severity of adolescent idiopathic scoliosis in a Chinese Han population: a case-control study. BMC Musculoskelet Disord 13:181. https://doi.org/10.1186/1471-2474-13-181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC (2008) Association study between adolescent idiopathic scoliosis and the DPP9 gene which is located in the candidate region identified by linkage analysis. Postgrad Med J 84(995):498–501. https://doi.org/10.1136/pgmj.2007.066639

    CAS  Article  PubMed  Google Scholar 

  123. Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2007) CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet 80(5):957–965. https://doi.org/10.1086/513571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Borysiak K, Janusz P, Andrusiewicz M, Chmielewska M, Kozinoga M, Kotwicki T, Kotwicka M (2020) CHD7 gene polymorphisms in female patients with idiopathic scoliosis. BMC Musculoskelet Disord 21(1):18. https://doi.org/10.1186/s12891-019-3031-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Xu L, Xia C, Qin X, Sun W, Tang NL, Qiu Y, Cheng JC, Zhu Z (2017) Genetic variant of BNC2 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Mol Genet Genomics 292(4):789–794. https://doi.org/10.1007/s00438-017-1315-3

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

Scientific and Technological Project of Henan province (No. 172102310090) and Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2019PT320025).

Author information

Authors and Affiliations

Authors

Contributions

WW and TC conceived the review. WW searched the literature and drafted the manuscript. ML and YL polished the language. WW and SW made the tables. NY and ML edited the manuscript. All authors read and approved its final version.

Corresponding authors

Correspondence to Ningning Yang or Ming Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ningning Yang and Ming Luo jointly supervised this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, T., Liu, Y. et al. Predictive value of single-nucleotide polymorphisms in curve progression of adolescent idiopathic scoliosis. Eur Spine J (2022). https://doi.org/10.1007/s00586-022-07213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00586-022-07213-y

Keywords

  • Adolescent idiopathic scoliosis
  • Curve progression
  • Prognostic factors
  • Single-nucleotide polymorphism