Kebaish KM, Neubauer PR, Voros GD et al (2011) Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine Phila Pa 1976 36:731–736. https://doi.org/10.1097/BRS.0b013e3181e9f120
Article
PubMed
Google Scholar
Lertudomphonwanit T, Kelly MP, Bridwell KH et al (2018) Rod fracture in adult spinal deformity surgery fused to the sacrum: prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J 18:1612–1624. https://doi.org/10.1016/J.SPINEE.2018.02.008
Article
PubMed
Google Scholar
Charles YP, Ntilikina Y (2020) Scoliosis surgery in adulthood: what challenges for what outcome? Ann Transl Med 8:34
Article
Google Scholar
Godzik J, Hlubek RJ, Newcomb AGUS et al (2019) Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs. Spine J 19:1121–1131. https://doi.org/10.1016/j.spinee.2019.01.005
Article
PubMed
Google Scholar
Ntilikina Y, Charles YP, Persohn S, Skalli W (2020) Influence of double rods and interbody cages on quasistatic range of motion of the spine after lumbopelvic instrumentation. Eur Spine J. https://doi.org/10.1007/s00586-020-06594-2
Article
PubMed
Google Scholar
Charosky S, Moreno P, Maxy P (2014) Instability and instrumentation failures after a PSO: a finite element analysis. Eur Spine J 23:2340–2349. https://doi.org/10.1007/s00586-014-3295-x
Article
PubMed
Google Scholar
Luca A, Ottardi C, Lovi A et al (2017) Anterior support reduces the stresses on the posterior instrumentation after pedicle subtraction osteotomy: a finite-element study. Eur Spine J 26:450–456. https://doi.org/10.1007/s00586-017-5084-9
Article
PubMed
Google Scholar
Seyed Vosoughi A, Joukar A, Kiapour A et al (2019) Optimal satellite rod constructs to mitigate rod failure following pedicle subtraction osteotomy (PSO): a finite element study. Spine J 19:931–941. https://doi.org/10.1016/j.spinee.2018.11.003
Article
PubMed
Google Scholar
Berjano P, Xu M, Damilano M et al (2019) Supplementary delta-rod configurations provide superior stiffness and reduced rod stress compared to traditional multiple-rod configurations after pedicle subtraction osteotomy: a finite element study. Eur Spine J. https://doi.org/10.1007/s00586-019-06012-2
Article
PubMed
Google Scholar
Luca A, Ottardi C, Sasso M et al (2017) Instrumentation failure following pedicle subtraction osteotomy: the role of rod material, diameter, and multi-rod constructs. Eur Spine J 26:764–770. https://doi.org/10.1007/s00586-016-4859-8
Article
PubMed
Google Scholar
Leszczynski A, Meyer F, Charles Y-P et al (2021) Development of a flexible instrumented lumbar spine finite element model and comparison with in-vitro experiments. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/10255842.2021.1948021
Article
Google Scholar
Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353. https://doi.org/10.1097/01.brs.0000152379.54463.65
Article
Google Scholar
ASTM F1537 - 20 Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539)
ASTM F136 - 13 Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401)
Blinded (2020) Validation of an instrumented lumbar spine finite element model. Under Rev
Rohlmann A, Neller S, Claes L et al (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976) 26:E557–E561. https://doi.org/10.1097/00007632-200112150-00014
CAS
Article
Google Scholar
Dahl BT, Harris JA, Gudipally M et al (2017) Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study. Eur Spine J 26:2773–2781. https://doi.org/10.1007/s00586-017-5222-4
Article
PubMed
Google Scholar
Smith JS, Shaffrey E, Klineberg E et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21:994–1003. https://doi.org/10.3171/2014.9.SPINE131176
Article
PubMed
Google Scholar
Hyun S-J, Lenke LG, Kim Y-C et al (2014) Comparison of standard 2-rod constructs to multiple-rod constructs for fixation across 3-column spinal osteotomies. Spine (Phila Pa 1976) 39:1899–904. https://doi.org/10.1097/BRS.0000000000000556
Article
Google Scholar
Hallager DW, Gehrchen M, Dahl B et al (2016) Use of supplemental short pre-contoured accessory rods and cobalt chrome alloy posterior rods reduces primary rod strain and range of motion across the pedicle subtraction osteotomy level: an in vitro biomechanical study. Spine (Phila Pa) 41:E388-95. https://doi.org/10.1097/BRS.0000000000001282
Article
Google Scholar
La Barbera L, Brayda-Bruno M, Liebsch C et al (2018) Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. Eur Spine J 27:2357–2366. https://doi.org/10.1007/s00586-018-5623-z
Article
PubMed
Google Scholar
La Barbera L, Wilke HJ, Liebsch C et al (2020) Biomechanical in vitro comparison between anterior column realignment and pedicle subtraction osteotomy for severe sagittal imbalance correction. Eur Spine J 29:36–44. https://doi.org/10.1007/s00586-019-06087-x
Article
PubMed
Google Scholar
Januszewski J, Beckman J, Harris J et al (2017) Biomechanical study of rod stress after pedicle subtraction osteotomy versus anterior column reconstruction: a finite element study. Surg Neurol Int 8:207. https://doi.org/10.4103/sni.sni_44_17
Article
PubMed
PubMed Central
Google Scholar
Berti F, La Barbera L, Piovesan A et al (2018) Residual stresses in titanium spinal rods: effects of two contouring methods and material plastic properties. J Biomech Eng. https://doi.org/10.1115/1.4040451
Article
PubMed
Google Scholar
Piovesan A, Berti F, Villa T et al (2019) Computational and experimental fatigue analysis of contoured spinal rods. J Biomech Eng. https://doi.org/10.1115/1.4042767
Article
PubMed
Google Scholar
Xu M, Yang J, Lieberman IH, Haddas R (2017) Lumbar spine finite element model for healthy subjects: development and validation. Comput Methods Biomech Biomed Eng 20:1–15. https://doi.org/10.1080/10255842.2016.1193596
Article
Google Scholar
Panzer MB, Cronin DS (2009) C4–C5 segment finite element model development, validation, and load-sharing investigation. J Biomech 42:480–490. https://doi.org/10.1016/J.JBIOMECH.2008.11.036
Article
PubMed
Google Scholar
Schmidt H, Heuer F, Drumm J et al (2007) Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech 22:377–384. https://doi.org/10.1016/J.CLINBIOMECH.2006.11.008
Article
Google Scholar
Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa) 11:914–927. https://doi.org/10.1016/0268-0033(87)90011-8
CAS
Article
Google Scholar
Zhao Y, Zhang S, Sun T et al (2013) Mechanical comparison between lengthened and short sacroiliac screws in sacral fracture fixation: A finite element analysis. Orthop Traumatol Surg Res 99:601–606. https://doi.org/10.1016/J.OTSR.2013.03.023
CAS
Article
PubMed
Google Scholar