Skip to main content
Log in

Global alignment taking into account the cervical spine with odontoid hip axis angle (OD-HA)

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript



Global alignment analysis is of upmost importance in adult spinal deformity patients (ASD). Numerous parameters exist in the literature to measure global alignment based upon C7 or T1. One common limitation of these parameters is that they neglect the cervical segment which is essential in spinal compensatory mechanisms and in horizontal gaze preservation. A recent stereoradiography analysis of asymptomatic subjects introduced a new 3D parameter (ODHA), defined as the angle between the vertical reference line and the line joining the odontoid tip (OD) to hip axis center (HA). Thus, the goal of this study was to analyze 3D global alignment of ASD patients using the new parameter odontoid hip axis angle and its relationship to other spinal parameters.


In this prospective study, 90 adult patients with lumbar scoliosis (Cobb > 20°) were included. All subjects underwent low dose biplanar X-rays with 3D spinal reconstructions. Based on published normative values of ODHA, we defined abnormally high value as mean ODHA of asymptomatic subject + 2SD (i.e., ODHA > 6.1°). Values of 3D radiographic parameters and ODI were compared between patients with ODHA > 6.1° and < 6.1°.


Mean ODHA was 5+/− 3.6° (0.4° to 18.6°). 22 patients had abnormally high ODHA. They were older than the 68 other patients (68+/− 9y vs 53+/− 14y, p = 0.001), without any significant difference in terms of sex, BMI and rate of rotatory subluxation (54% vs 62%, p = 0.06). However, coronal and sagittal deformity was more important in patients with abnormal ODHA (larger Cobb angle, coronal malalignment, pelvic tilt and lower lumbar lordosis). Patients with abnormal ODHA had significantly worst ODI (50+/− 23 vs 30+/− 18, p = 0.0005).


Extreme values of ODHA are observed in significantly older patients with significant functional impairment. In addition, in these patients with sagittal malalignment with loss of lumbar lordosis, who recruit compensatory mechanisms such as pelvic retroversion, the cervical area is also involved with a posture in cervical hyperlordosis to maintain the head over the pelvis. Thus, ODHA is an interesting parameter allowing a more comprehensive alignment measurement taking into account the mechanisms of compensation of the cervical spine to the pelvis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Dubousset J (2012) L’homme debout: le rachis et son plan horizontal, scolioses. Mem Acad Natl Chir 11:66–70

    Google Scholar 

  2. Guigui P, Levassor N, Rillardon L, Wodecki P, Cardinne L (2003) Physiological value of pelvic and spinal parameters of sagital balance: analysis of 250 healthy volunteers. Rev Chir Orthop Reparatrice Appar Mot 89(6):496–506

    CAS  PubMed  Google Scholar 

  3. Vaz G, Roussouly P, Berthonnaud E, Dimnet J (2002) Sagittal morphology and equilibrium of pelvis and spine. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 11(1):80–87

    Article  CAS  Google Scholar 

  4. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87(2):260–267

    Article  Google Scholar 

  5. Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 18(1):40–47

    Article  Google Scholar 

  6. Schwab F, Farcy J-P, Bridwell K, Berven S, Glassman S, Harrast J et al (2006) A clinical impact classification of scoliosis in the adult. Spine 31(18):2109–2114

    Article  Google Scholar 

  7. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine 20(12):1351–1358

    Article  CAS  Google Scholar 

  8. Protopsaltis T, Schwab F, Bronsard N, Smith JS, Klineberg E, Mundis G et al (2014) TheT1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96(19):1631–1640

    Article  Google Scholar 

  9. Roussouly P, Berthonnaud E, Dimnet J (2003) Geometrical and mechanical analysis of lumbar lordosis in an asymptomatic population: proposed classification. Rev Chir Orthop Reparatrice Appar Mot 89(7):632–639

    CAS  PubMed  Google Scholar 

  10. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy J-PC, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387–392

    Article  Google Scholar 

  11. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30(6):682–688

    Article  Google Scholar 

  12. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599-606

    Article  Google Scholar 

  13. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029

    Article  Google Scholar 

  14. Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 7(2):99–103

    Article  CAS  Google Scholar 

  15. Diebo BG, Oren JH, Challier V, Lafage R, Ferrero E, Liu S et al (2016) Global sagittal axis: a step toward full-body assessment of sagittal plane deformity in the human body. J Neurosurg Spine 25(4):494–499

    Article  Google Scholar 

  16. Kim YB, Kim YJ, Ahn Y-J, Kang G-B, Yang J-H, Lim H et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 23(7):1400–1406

    Article  Google Scholar 

  17. Attali V, Clavel L, Rouch P, Rivals I, Rémy-Néris S, Skalli W et al (2019) Compensation of respiratory-related postural perturbation is achieved by maintenance of head-to-pelvis alignment in healthy humans. Front Physiol 10:441

    Article  Google Scholar 

  18. Amabile C, Pillet H, Lafage V, Barrey C, Vital J-M, Skalli W (2016) A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 25(11):3666–3674

    Article  Google Scholar 

  19. Amabile C, Le Huec J-C, Skalli W (2018) Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 27(2):458–466

    Article  Google Scholar 

  20. Steffen J-S, Obeid I, Aurouer N, Hauger O, Vital J-M, Dubousset J et al (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 19(5):760–767

    Article  Google Scholar 

  21. Sugrue PA, McClendon J, Smith TR, Halpin RJ, Nasr FF, OʼShaughnessy BA et al (2013) Redefining global spinal balance: normative values of cranial center of mass from a prospective cohort of asymptomatic individuals. Spine 38(6):484–489

    Article  Google Scholar 

  22. Vital JM, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane. A study of the center of gravity of the head. Surg Radiol Anat SRA 8(3):169–173

    Article  CAS  Google Scholar 

  23. Vogler D, Paillex R, Norberg M, de Goumoëns P, Cabri J (2008) Cross-cultural validation of the Oswestry disability index in French. Ann Readapt Med Phys Rev Sci Soc Francaise Reeducat Fonct Readapt Med Phys 51(5):379–385

    CAS  Google Scholar 

  24. Grönblad M, Hupli M, Wennerstrand P, Järvinen E, Lukinmaa A, Kouri JP et al (1993) Intercorrelation and test-retest reliability of the Pain Disability Index (PDI) and the Oswestry Disability Questionnaire (ODQ) and their correlation with pain intensity in low back pain patients. Clin J Pain 9(3):189–195

    Article  Google Scholar 

  25. Dubousset J, Charpak G, Skalli W, Kalifa G, Lazennec J-Y (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93(6 Suppl):141–143

    Article  CAS  Google Scholar 

  26. Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine 29(20):2284–2289

    Article  Google Scholar 

  27. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  CAS  Google Scholar 

  28. Ferrero E, Lafage R, Diebo BG, Challier V, Illharreborde B, Schwab F et al (2017) Tridimensional analysis of rotatory subluxation and sagittal spinopelvic alignment in the setting of adult spinal deformity. Spine Deform 5(4):255–264

    Article  Google Scholar 

  29. Aykac B, Ayhan S, Yuksel S, Guler UO, Pellise F, Alanay A et al (2015) Sagittal alignment of cervical spine in adult idiopathic scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 24(6):1175–1182

    Article  Google Scholar 

  30. Ferrero E, Bocahut N, Lefevre Y, Roussouly P, Pesenti S, Lakhal W et al (2018) Proximal junctional kyphosis in thoracic adolescent idiopathic scoliosis: risk factors and compensatory mechanisms in a multicenter national cohort. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 27(9):2241–2250

    Article  Google Scholar 

  31. Faundez AA, Richards J, Maxy P, Price R, Léglise A, LeHuec JC (2018) The mechanism in junctional failure of thoraco-lumbar fusions. Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown. Eur Spine J 1:139–148.

    Article  Google Scholar 

  32. Diebo BG, Ferrero E, Lafage R, Challier V, Liabaud B, Liu S et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine 40(9):642–649

    Article  Google Scholar 

  33. Ferrero E, Liabaud B, Challier V, Lafage R, Diebo BG, Vira S et al (2016) Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine 24(3):436–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Emmanuelle Ferrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, E., Guigui, P., Khalifé, M. et al. Global alignment taking into account the cervical spine with odontoid hip axis angle (OD-HA). Eur Spine J 30, 3647–3655 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: