Skip to main content
Log in

How helpful is the halo-gravity traction in severe spinal deformity patients?: A systematic review and meta-analysis

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

This study sought to evaluate the complications and clinic outcome in radiographic parameters, pulmonary function, and nutritional status of halo-gravity traction (HGT) in treating severe spinal deformity.

Methods

Embase, PubMed, Cochrane, Web of Science databases were searched comprehensively for relevant studies from inception to February 2021, by using combined text and MeSH terms and English language restriction was used. The data, including radiographic parameters, pulmonary function (FVC %), and nutritional status (BMI) was extracted from included studies. All meta-analyses were conducted using random or fixed-effects models according the between-study heterogeneity, estimated with I2.

Results

Four hundred and forty-six studies were identified and twelve studies with a total of 372 patients were included in this review. Compared with pre-traction values, there were reduction in cobb angle of 28.12° [95% CI (22.18, 34.18)], decrease in thoracic kyphosis of 26.76°[95% CI (20.73, 32.78)], improvements in spine height[SMD = -0.89, 95% CI (− 1.56, − 0.21)] and in coronal balance[WMD = − 0.03, 95% CI (− 1.56, − 0.21), P = 0.84] with preoperative halo-gravity traction for severe spinal deformity patients. Besides, our pooled analysis showed the improvement in pulmonary function (FVC %) [WMD = − 9.56, 95% CI (− 1.56, − 0.21)] and increase in nutritional status (BMI) [WMD = − 0.50, 95% CI (− 1.56, − 0.21)].

Conclusion

Partial correction can be achieved by preoperative HGT, thereby reducing the difficulty of the operation and the risk of neurologic injury caused by excessive correction. Moreover, preoperative HGT can improve pulmonary function and nutritional status and, thus, increase patients’ tolerance to surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5

Similar content being viewed by others

References

  1. Xia L, Li P, Wang D, Bao D, Xu J (2015) Spinal osteotomy techniques in management of severe pediatric spinal deformity and analysis of postoperative complications. Spine 40:E286–E292 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  2. Prudnikova OG, Shchurova EN (2018) Surgical correction of severe spinal deformities using a staged protocol of external and internal techniques. Int Orthop 42:331–338. https://doi.org/10.1007/s00264-017-3738-1*10.1007/s00264-017-3738-1

    Article  PubMed  Google Scholar 

  3. Kose KC, Bozduman O, Yenigul AE, Igrek S (2017) Spinal osteotomies: indications, limits and pitfalls. EFORT Open Rev 2:73–82. https://doi.org/10.1302/2058-5241.2.160069*10.1302/2058-5241.2.160069

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koller H, Zenner J, Gajic V, Meier O, Ferraris L, Hitzl W (2012) The impact of halo-gravity traction on curve rigidity and pulmonary function in the treatment of severe and rigid scoliosis and kyphoscoliosis: a clinical study and narrative review of the literature. Eur Spine J 21:514–529

    Article  PubMed  Google Scholar 

  5. Sucato DJ (2010) Management of severe spinal deformity: scoliosis and kyphosis. Spine 35:2186–2192. https://doi.org/10.1097/BRS.0b013e3181feab19*10.1097/BRS.0b013e3181feab19 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  6. Mehrpour S, Sorbi R, Rezaei R, Mazda K (2017) Posterior-only surgery with preoperative skeletal traction for management of severe scoliosis. Arch Orthop Trauma Surg 137:457–463. https://doi.org/10.1007/s00402-017-2642-x*10.1007/s00402-017-2642-x

    Article  PubMed  Google Scholar 

  7. Xu BY, Qi LT, Wang Y, Li CD, Sun HL, Wang SJ, Yu ZR, Zhao Y, Liu LL (2020) Clinical efficacy of short-term halo-pelvic traction combined with surgery in the treatment of severe spinal deformities. Beijing Da Xue Xue Bao Yi Xue Ban 52:875–880

    CAS  PubMed  Google Scholar 

  8. Sun K, Hu H, Gao L, Huang D, Yang T, Hao D (2020) Perioperative halo-gravity traction in the treatment of scoliosis with intraspinal anomalies. World Neurosurg 140:e219–e224. https://doi.org/10.1016/j.wneu.2020.04.242*10.1016/j.wneu.2020.04.242

    Article  PubMed  Google Scholar 

  9. Rinella A, Lenke L, Whitaker C, Kim Y, Park SS, Peelle M, Edwards CN, Bridwell K (2005) Perioperative halo-gravity traction in the treatment of severe scoliosis and kyphosis. Spine 30:475–482. https://doi.org/10.1097/01.brs.0000153707.80497.a2*10.1097/01.brs.0000153707.80497.a2 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  10. Sink EL, Karol LA, Sanders J, Birch JG, Johnston CE, Herring JA (2001) Efficacy of perioperative halo-gravity traction in the treatment of severe scoliosis in children. J Pediatr Orthop 21:519–524

    CAS  PubMed  Google Scholar 

  11. Sponseller PD, Takenaga RK, Newton P, Boachie O, Flynn J, Letko L, Betz R, Bridwell K, Gupta M, Marks M, Bastrom T (2008) The use of traction in the treatment of severe spinal deformity. Spine 33:2305–2309. https://doi.org/10.1097/BRS.0b013e318184ef79*10.1097/BRS.0b013e318184ef79 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535. https://doi.org/10.1136/bmj.b2535*10.1136/bmj.b2535

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wells G, Shea B, O'Connell J (2014) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Research Institute Web site 7

  14. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557*10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  15. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186*10.1002/sim.1186

    Article  PubMed  Google Scholar 

  16. Bao H, Yan P, Bao M, Qiu Y, Zhu Z, Liu Z, Cheng JC, Ng BK, Zhu F (2016) Halo-gravity traction combined with assisted ventilation: an effective pre-operative management for severe adult scoliosis complicated with respiratory dysfunction. Eur Spine J 25:2416–2422

    Article  PubMed  Google Scholar 

  17. Davies NR, Vasquez RV, Remondino RG, Galaretto E, Piantoni L, Rodriguez S, Leonardelli E, Francheri WI, Bersusky ES, Tello CA, Noel MA (2020) Inpatient versus outpatient halo-gravity traction in children with severe spinal deformity. Spine Deform 8:711–715

    Article  PubMed  Google Scholar 

  18. Han X, Sun W, Qiu Y, Xu L, Sha S, Shi B, Yan H, Liu Z, Zhu Z (2016) Halo gravity traction is associated with reduced bone mineral density of patients with severe kyphoscoliosis. Biomed Res Int 2016:8056273

    PubMed  PubMed Central  Google Scholar 

  19. Li X, Zeng L, Li X, Chen X, Ke C (2017) Preoperative halo-gravity traction for severe thoracic kyphoscoliosis patients from tibet: radiographic correction, pulmonary function improvement, nursing, and complications. Med Sci Monit 23:4021–4027

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iyer S, Boachie-Adjei O, Duah HO, Yankey KP, Mahmud R, Wulff I, Tutu HO, Akoto H (2019) Halo gravity traction can mitigate preoperative risk factors and early surgical complications in complex spine deformity. Spine 44:629–636. https://doi.org/10.1097/BRS.0000000000002906*10.1097/BRS.0000000000002906 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  21. Iyer S, Duah HO, Wulff I, Osei TH, Mahmud R, Yankey KP, Akoto H, Boachie-Adjei O (2019) The use of halo gravity traction in the treatment of severe early onset spinal deformity. Spine 44:E841–E845. https://doi.org/10.1097/BRS.0000000000002997*10.1097/BRS.0000000000002997 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  22. Shi B, Xu L, Li Y, Liu Z, Sun X, Zhu Z, Qiu Y (2019) Pre-operative halo-gravity traction in severe neurofibromatosis type 1 and congenital scoliosis with thoracic rotatory subluxation. Clin Neurol Neurosurg 187:105548

    Article  PubMed  Google Scholar 

  23. Shi B, Liu D, Shi B, Li Y, Xia S, Jiang E, Qiu Y, Zhu Z (2020) A Retrospective study to compare the efficacy of preoperative halo-gravity traction and postoperative halo-femoral traction after posterior spinal release in corrective surgery for severe kyphoscoliosis. Med Sci Monit 26:e919281

    PubMed  PubMed Central  Google Scholar 

  24. Shimizu T, Lenke LG, Cerpa M, Lehman RJ, Pongmanee S, Sielatycki JA (2020) Preoperative halo-gravity traction for treatment of severe adult kyphosis and scoliosis. Spine Deform 8:85–95

    Article  PubMed  Google Scholar 

  25. Umezu T, Fujita N, Yagi M, Tsuji O, Nagoshi N, Ishii K, Nakamura M, Matsumoto M, Watanabe K (2017) Surgical correction of severe kyphoscoliosis associated with crouzon syndrome with serious postoperative respiratory problems: a case report. JBJS Case Connect 7:e98

    Article  PubMed  Google Scholar 

  26. Watanabe K, Lenke LG, Bridwell KH, Kim YJ, Hensley M, Koester L (2010) Efficacy of perioperative halo-gravity traction for treatment of severe scoliosis (>/=100 degrees ). J Orthop Sci 15:720–730. https://doi.org/10.1007/s00776-010-1523-8*10.1007/s00776-010-1523-8

    Article  PubMed  Google Scholar 

  27. Liu H, Yang C, Zheng Z, Ding W, Wang J, Wang H, Li S (2015) Comparison of Smith-Petersen osteotomy and pedicle subtraction osteotomy for the correction of thoracolumbar kyphotic deformity in ankylosing spondylitis: a systematic review and meta-analysis. Spine 40:570–579. https://doi.org/10.1097/BRS.0000000000000815*10.1097/BRS.0000000000000815 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  28. Yang C, Zheng Z, Liu H, Wang J, Kim YJ, Cho S (2016) Posterior vertebral column resection in spinal deformity: a systematic review. Eur Spine J 25:2368–2375. https://doi.org/10.1007/s00586-015-3767-7*10.1007/s00586-015-3767-7

    Article  PubMed  Google Scholar 

  29. Park DK, Braaksma B, Hammerberg KW, Sturm P (2013) The efficacy of preoperative halo-gravity traction in pediatric spinal deformity the effect of traction duration. J Spinal Disord Tech 26:146–154. https://doi.org/10.1097/bsd.0b013e318237828c*10.1097/bsd.0b013e318237828c

    Article  PubMed  Google Scholar 

  30. Koptan W, ElMiligui Y (2012) Three-staged correction of severe rigid idiopathic scoliosis using limited halo-gravity traction. Eur Spine J 21:1091–1098. https://doi.org/10.1007/s00586-011-2111-0*10.1007/s00586-011-2111-0

    Article  PubMed  Google Scholar 

  31. Rock P, Rich PB (2003) Postoperative pulmonary complications. Curr Opin Anaesthesiol 16:123–131. https://doi.org/10.1097/00001503-200304000-00004*10.1097/00001503-200304000-00004

    Article  PubMed  Google Scholar 

  32. Gonzalez C, Ferris G, Diaz J, Fontana I, Nunez J, Marin J (2003) Kyphoscoliotic ventilatory insufficiency: effects of long-term intermittent positive-pressure ventilation. Chest 124:857–862. https://doi.org/10.1378/chest.124.3.857*10.1378/chest.124.3.857

    Article  PubMed  Google Scholar 

  33. Teixeira DSL, de Barros AG, de Azevedo GB (2015) Management of severe and rigid idiopathic scoliosis. Eur J Orthop Surg Traumatol 25(Suppl 1):S7–S12. https://doi.org/10.1007/s00590-015-1650-1*10.1007/s00590-015-1650-1

    Article  Google Scholar 

  34. Nemani VM, Kim HJ, Bjerke-Kroll BT, Yagi M, Sacramento-Dominguez C, Akoto H, Papadopoulos EC, Sanchez-Perez-Grueso F, Pellise F, Nguyen JT, Wulff I, Ayamga J, Mahmud R, Hodes RM, Boachie-Adjei O (2015) Preoperative halo-gravity traction for severe spinal deformities at an SRS-GOP site in West Africa: protocols, complications, and results. Spine 40:153–161. https://doi.org/10.1097/BRS.0000000000000675*10.1097/BRS.0000000000000675 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  35. Yang C, Wang H, Zheng Z, Zhang Z, Wang J, Liu H, Kim YJ, Cho S (2017) Halo-gravity traction in the treatment of severe spinal deformity: a systematic review and meta-analysis. Eur Spine J 26:1810–1816

    Article  PubMed  Google Scholar 

  36. Wilkins C, MacEwen GD (1977) Cranial nerve injury from halo traction. Clin Orthop Relat Res 126:106–110

    Google Scholar 

  37. Mehlman CT, Al-Sayyad MJ, Crawford AH (2004) Effectiveness of spinal release and halo-femoral traction in the management of severe spinal deformity. J Pediatr Orthop 24:667–673. https://doi.org/10.1097/00004694-200411000-00014*10.1097/00004694-200411000-00014

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81772421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Hai.

Ethics declarations

Conflict of interest

We don’t have a financial or personal relationship with a third party. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Consent to participate

We state that we have consented to participate.

Consent for publication

We state that we have consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Han, B., Hai, Y. et al. How helpful is the halo-gravity traction in severe spinal deformity patients?: A systematic review and meta-analysis. Eur Spine J 30, 3162–3171 (2021). https://doi.org/10.1007/s00586-021-06902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06902-4

Keywords

Navigation