Skip to main content


Log in

Subclinical infection can be an initiator of inflammaging leading to degenerative disk disease: evidence from host-defense response mechanisms

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript



There is considerable controversy on the role of genetics, mechanical and environmental factors, and, recently, on subclinical infection in triggering inflammaging leading to disk degeneration. The present study investigated sequential molecular events in the host, analyzing proteome level changes that will reveal triggering factors of inflammaging and degeneration.


Ten MRI normal disks (ND) from braindead organ donors and 17 degenerated disks (DD) from surgery were subjected to in-gel-based label-free ESI-LC–MS/MS analysis. Bacterial-responsive host-defense response proteins/pathways leading to Inflammaging were identified and compared between ND and DD.


Out of the 263 well-established host-defense response proteins (HDRPs), 243 proteins were identified, and 64 abundantly expressed HDRPs were analyzed further. Among the 21 HDRPs common to both ND and DD, complement factor 3 (C3) and heparan sulfate proteoglycan 2 (HSPG2) were significantly upregulated, and lysozyme (LYZ), superoxide dismutase 3 (SOD3), phospholipase-A2 (PLA2G2A), and tissue inhibitor of metalloproteinases 3 (TIMP-3) were downregulated in DD. Forty-two specific HDRPs mainly, complement proteins, apolipoproteins, and antimicrobial proteins involved in the complement cascade, neutrophil degranulation, and oxidative-stress regulation pathways representing an ongoing host response to subclinical infection and uncontrolled inflammation were identified in DD. Protein–Protein interaction analysis revealed cross talk between most of the expressed HDRPs, adding evidence to bacterial presence and stimulation of these defense pathways.


The predominance of HDRPs involved in complement cascades, neutrophil degranulation, and oxidative-stress regulation indicated an ongoing infection mediated inflammatory process in DD. Our study has documented increasing evidence for bacteria’s role in triggering the innate immune system leading to chronic inflammation and degenerative disk disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others



Alpha 1b glycoprotein


Antimicrobial proteins


Analysis of Networks with Interactive MOdeling


Serum amyloid P component


Rho GTPase activating protein 5




Proto-oncogene-B-rapidly accelerated fibrosarcoma


Complement component C3


Complement component C5


Carbonic Anhydrase 2






Complement factor D


Complement factor H




C-type lectin receptors




Cathepsin G


Disease-associated molecular patterns




Degenerated disks


Degenerative disk disease


Defensin–Alpha 1


Extracellular matrix


Electrospray ionization


Interactive tool for gene ontology analysis


Host-defense response proteins




Heat shock 70 kDa protein A8


Heparan sulfate proteoglycan 2/perlecan


Indian Council of Medical Research


Interferon gamma


Immunoglobulin heavy constant mu


Interleukin 6


Institutional review Board


Liquid chromatography


Lipocalin 2


Galectin 8


Active Form of CAMP precursor




Lipoteichoic acid






Membrane attack complex


Mitogen–Activated protein kinase


Monocyte chemoattractant protein-1


Monocyte chemotactic protein 3




Magnetic resonance imaging


Tandem mass spectrometry


Normal disks

NK cells:

Natural killer cells


NOD-like receptors


Nucleotide–binding oligomerization domain


Pathogen-associated molecular patterns


Protein annotation through evolutionary relationship




Synovial phospholipase A2


Protein–protein interaction


Peroxiredoxin 1


Peroxiredoxin 2


Peroxiredoxin 6


Pattern recognition receptors


Peptide spectral match


Rapidly accelerated fibrosarcoma


Rat sarcoma


A database of reactions, pathways and biological processes


Retinoic acid-inducible gene 1 like receptors


Extracellular superoxide dismutase


Search tool for the retrieval of interacting genes/proteins


Terminal complement complex


Tissue inhibitor of metalloproteinase 3


Toll–Like receptors


Tenascin C


Tumor necrosis factor-inducible gene 6 protein


Tumor necrosis factor alpha or cachexin, or cachectin


Tool for interactive modeling


  1. Rajasekaran S, Tangavel C, KS, SVA et al (2020) Inflammaging determines health and disease in lumbar discs-evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J Off J North Am Spine Soc 20:48–59.

    Article  CAS  Google Scholar 

  2. Sadowska A, Touli E, Hitzl W et al (2018) Inflammaging in cervical and lumbar degenerated intervertebral discs: analysis of proinflammatory cytokine and TRP channel expression. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 27:564–577.

    Article  Google Scholar 

  3. Capoor MN, Birkenmaier C, Wang JC et al (2019) A review of microscopy-based evidence for the association of propionibacterium acnes biofilms in degenerative disc disease and other diseased human tissue. Eur Spine J 28:2951–2971.

    Article  PubMed  Google Scholar 

  4. Ohrt-Nissen S, Fritz BG, Walbom J et al (2018) Bacterial biofilms: a possible mechanism for chronic infection in patients with lumbar disc herniation—a prospective proof-of-concept study using fluorescence in situ hybridization. APMIS 126:440–447.

    Article  CAS  PubMed  Google Scholar 

  5. Urquhart DM, Zheng Y, Cheng AC et al (2015) Could low grade bacterial infection contribute to low back pain? A syst rev BMC Med 13:13.

    Article  Google Scholar 

  6. Rajasekaran S, Tangavel C, Aiyer SN et al (2017) ISSLS PRIZE IN CLINICAL SCIENCE 2017: is infection the possible initiator of disc disease? An insight from proteomic analysis. Eur Spine J OffPublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 26:1384–1400.

    Article  CAS  Google Scholar 

  7. Lin Y, Tang G, Jiao Y et al (2018) Propionibacterium acnes Induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxid Med Cell Longev.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rao PJ, Maharaj M, Chau C et al (2020) Degenerate-disc infection study with contaminant control (DISC): a multicenter prospective case-control trial. Spine J Off J North Am Spine Soc 20:1544–1553.

    Article  Google Scholar 

  9. Fritzell P, Welinder-Olsson C, Jönsson B et al (2019) Bacteria: back pain, leg pain and Modic sign-a surgical multicentre comparative study. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 28:2981–2989.

    Article  Google Scholar 

  10. Rajasekaran S, Soundararajan DCR, Tangavel C et al (2020) Human intervertebral discs harbour a unique microbiome and dysbiosis determines health and disease. Eur Spine J Off PublEur Spine SocEur Spinal Deform SocEur Sect Cerv Spine Res Soc 29:1621–1640.

    Article  Google Scholar 

  11. Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in saccharomyces cerevisiae. J Proteome Res 5:2339–2347.

    Article  CAS  PubMed  Google Scholar 

  12. Beck WHJ, Adams CP, Biglang-awa IM et al (2013) Apolipoprotein A-I binding to anionic vesicles and lipopolysaccharides: Role for lysine residues in antimicrobial properties. BiochimBiophysActa BBA - Biomembr 1828:1503–1510.

    Article  CAS  Google Scholar 

  13. Onat A, Hergenç G, Ayhan E et al (2009) Impaired anti-inflammatory function of apolipoprotein A-II concentrations predicts metabolic syndrome and diabetes at 4 years follow-up in elderly Turks. ClinChem Lab Med 47:1389–1394.

    Article  CAS  Google Scholar 

  14. Sturm E, Roula D, Theiler A et al (2019) Apolipoprotein A-IV is reduced in serum of allergic patients and acts as an endogenous anti-inflammatory protein. EurRespir J.

    Article  Google Scholar 

  15. Gaglione R, Cesaro A, Dell’Olmo E et al (2019) Effects of human antimicrobial cryptides identified in apolipoprotein B depend on specific features of bacterial strains. Sci Rep 9:6728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee JY, Kang MJ, Choi JY et al (2018) Apolipoprotein B binds to enolase-1 and aggravates inflammation in rheumatoid arthritis. Ann Rheum Dis 77:1480–1489.

    Article  CAS  PubMed  Google Scholar 

  17. Crespo-Sanjuán J, Zamora-Gonzalez N, Calvo-Nieves M, Andres-Ledesma C (2017) Apolipoprotein D

  18. Zhang H, Wu L-M, Wu J (2011) Cross-Talk between Apolipoprotein E and Cytokines. In: Mediators Inflamm. Accessed 16 Oct 2020

  19. Kloske CM, Wilcock DM (2020) The important interface between apolipoprotein E and Neuroinflammation in Alzheimer’s Disease. Front Immunol.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tschopp J, Chonn A, Hertig S, French LE (1993) Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J Immunol 151:2159–2165

    CAS  PubMed  Google Scholar 

  21. Vanwalleghem G, Fontaine F, Lecordier L et al (2015) Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun 6:8078.

    Article  CAS  PubMed  Google Scholar 

  22. Viennois E, Baker MT, Xiao B et al (2015) Longitudinal study of circulating protein biomarkers in inflammatory bowel disease. J Proteomics 112:166–179.

    Article  CAS  PubMed  Google Scholar 

  23. Liu C-C, Ahearn JM (2005) Chapter 10—acute-phase proteins and inflammation: immunological and clinical implications. In: Lotze MT, Thomson AW (eds) Measuring Immunity. Academic Press, London, pp 131–143

    Chapter  Google Scholar 

  24. Huang B, Chen J, Zhang X et al (2019) Alpha 2-macroglobulin as dual regulator for both anabolism and catabolism in the cartilaginous endplate of Intervertebral Disc. Spine 44:E338–E347.

    Article  PubMed  Google Scholar 

  25. Yang Y, Liu G, He Q et al (2019) A Promising Candidate: Heparin-Binding Protein Steps onto the Stage of Sepsis Prediction. In: J. Immunol. Res. Accessed 16 Oct 2020.

  26. Gao S, Zhu H, Zuo X, LUO H (2018) Cathepsin G and Its role in inflammation and autoimmune diseases. Arch Rheumatol 33:498–504.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu PT, Stenger S, Li H et al (2006) Toll-Like receptor triggering of a vitamin D-Mediated human antimicrobial response. Science 311:1770–1773.

    Article  CAS  PubMed  Google Scholar 

  28. Ghosh S, Stepicheva N, Yazdankhah M et al (2020) The role of lipocalin-2 in age-related macular degeneration (AMD). Cell Mol Life Sci 77:835–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teixeira GQ, Yong Z, Goncalves RM et al (2020) Terminal complement complex formation is associated with intervertebral disc degeneration. Eur Spine J.

    Article  PubMed  Google Scholar 

  30. Catalase Enhances Viability of Human Chondrocytes in Culture by Reducing Reactive Oxygen Species and Counteracting Tumor Necrosis Factor-α-Induced Apoptosis—PubMed. Accessed 17 Oct 2020

  31. Sly WS, Hewett-Emmett D, Whyte MP et al (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. ProcNatlAcadSci 80:2752–2756.

    Article  CAS  Google Scholar 

  32. Chandramohanadas R, Davis PH, Beiting DP et al (2009) Apicomplexan parasites co-opt host calpains to facilitate their escape from infected cells. Science 324:794–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akhatib B, Önnerfjord P, Gawri R et al (2013) Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J BiolChem 288:19280–19287.

    Article  CAS  Google Scholar 

  34. Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert OpinTher Targets 22:191–199.

    Article  CAS  Google Scholar 

  35. Rosenzweig SD, Holland SM (2016) 11 - Defects of Innate immunity. In: Leung DYM, Szefler SJ, Bonilla FA et al (eds) Pediatric Allergy: Principles and Practice, 3rd edn. Elsevier, London, pp 101-111.e3

    Chapter  Google Scholar 

  36. Ding C, Fan X, Wu G (2017) Peroxiredoxin 1 – an antioxidant enzyme in cancer. J Cell Mol Med 21:193–202.

    Article  CAS  PubMed  Google Scholar 

  37. Salzano S, Checconi P, Hanschmann E-M et al (2014) Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. ProcNatlAcadSci U S A 111:12157–12162.

    Article  CAS  Google Scholar 

  38. Arevalo JA, Vázquez-Medina JP (2018) The role of Peroxiredoxin 6 in cell signaling. Antioxidants.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Yang M, Lan M, et al (2017) ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration. In: Oxid. Med. Cell. Longev. Accessed 28 Sep 2020.

  40. Wang S, Song R, Wang Z et al (2018) S100A8/A9 in inflammation. Front Immunol.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Muñoz L, Borrero M-J, Úbeda M et al (2019) Intestinal immune dysregulation driven by dysbiosis promotes barrier disruption and bacterial translocation in rats with cirrhosis. HepatolBaltimMd 70:925–938.

    Article  CAS  Google Scholar 

  42. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J GerontolABiolSci Med Sci 69(Suppl 1):S4-9.

    Article  Google Scholar 

  43. van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH (2018) The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res 49:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang D, Kang R, Coyne CB et al (2012) PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sansonetti PJ (2011) To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4:8–14.

    Article  CAS  PubMed  Google Scholar 

  46. Harder J, Gläser R, Schröder J-M (2007) Human antimicrobial proteins effectors of innate immunity. J Endotoxin Res 13:317–338.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang H, Kim JK, Edwards CA et al (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7:909–915.

    Article  CAS  PubMed  Google Scholar 

  48. Zuo L, Prather ER, Stetskiv M et al (2019) Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J MolSci.

    Article  Google Scholar 

  49. Madera L, Ma S, Hancock REW (2011) Host defense (Antimicrobial) peptides and proteins. Immune Response Infect.

    Article  Google Scholar 

  50. Mookherjee N, Hamill P, Gardy J et al (2009) Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. MolBiosyst 5:483–496.

    Article  CAS  Google Scholar 

  51. Bachmeier BE, Nerlich A, Mittermaier N et al (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18:1573–1586.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Klos A, Tenner AJ, Johswich K-O et al (2009) The role of the Anaphylatoxins in health and disease. MolImmunol 46:2753–2766.

    Article  CAS  Google Scholar 

  53. Krock E, Rosenzweig DH, Currie JB et al (2017) Toll-like receptor activation induces degeneration of human intervertebral discs. Sci Rep 7:17184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hajishengallis G, Lambris JD (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol 31:154–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richmond BW, Du R-H, Han W et al (2018) Bacterial-derived neutrophilic inflammation drives lung remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Cell MolBiol 58:736–744.

    Article  CAS  Google Scholar 

  56. Gavin C, Meinke S, Heldring N et al (2019) The complement system is essential for the phagocytosis of mesenchymal stromal cells by monocytes. Front Immunol.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wilkins LJ, Monga M, Miller AW (2019) Defining dysbiosis for a cluster of chronic diseases. Sci Rep 9:12918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoSPathog 13:e1006512.

    Article  CAS  Google Scholar 

  59. van Hensbergen VP, Wu Y, van Sorge NM, Touqui L (2020) Type IIA Secreted phospholipase A2 in host defense against bacterial infections. Trends Immunol 41:313–326.

    Article  CAS  PubMed  Google Scholar 

Download references


SR, SDCR, TC, and MR conceived and formulated the project. NSM, TC contributed to the design of the analysis; performed laboratory experiments and bulk of data analysis; SDCR, KSSV, KRM, and SAP wrote and prepared the manuscript. All authors have read through and given the final approval of the submitted publication. We also acknowledge the efforts of Ms M Sujitha and Ms M Dhanalakshmi for assistance in LC–MS/MS experiments.


The project was funded by Ganga Orthopaedic Research & Education Foundation (GOREF 2019–07).

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed after approval of the IRB committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, S., Chitraa, T., Dilip Chand Raja, S. et al. Subclinical infection can be an initiator of inflammaging leading to degenerative disk disease: evidence from host-defense response mechanisms. Eur Spine J 30, 2586–2604 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: