Skip to main content

Advertisement

Log in

Evaluating the effect of a post-processing algorithm in detection of annular fissure on MR imaging

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background and purpose

Visualization of annular fissures on MRI is becoming increasingly important but remains challenging. Our purpose was to test whether an image processing algorithm could improve detection of annular fissures.

Materials and methods

In this retrospective study, two neuroradiologists identified 56 IVDs with annular fissures and 97 IVDs with normal annulus fibrosus in lumbar spine MRIs of 101 patients (58 M, 43 F; age ± SD 15.1 ± 3.0 years). Signal intensities of diseased and normal annulus fibrosus, and contrast-to-noise ratio between them on sagittal T2-weighted images were calculated before and after processing with a proprietary software. Effect of processing on detection of annular fissures by two masked neuroradiologists was also studied for IVDs with Pfirrmann grades of ≤ 2 and > 2.

Results

Mean (SD) signal baseline intensities of diseased and normal annulus fibrosus were 57.6 (23.3) and 24.4 (7.8), respectively (p < 0.001). Processing increased (p < 0.001) the mean (SD) intensity of diseased annulus to 110.6 (47.9), without affecting the signal intensity of normal annulus (p = 0.14). Mean (SD) CNR between the diseased and normal annulus increased (p < 0.001) from 11.8 (14.1) to 29.6 (29.1). Both masked readers detected more annular fissures after processing in IVDs with Pfirrmann grade of ≤ 2 and > 2, with an apparent increased sensitivity and decreased specificity using predefined image-based human categorization as a reference standard.

Conclusions

Image processing improved CNR of annular fissures and detection rate of annular fissures. However, further studies with a more stringent reference standard are needed to assess its effect on sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IVDs:

Intervertebral discs

CIE:

Correlative Image Enhancement

STIR:

Short Tau Inversion Recovery

TSE:

Turbo Spine Echo

ROI:

Region of Interest

CNR:

Contrast-to-noise ratio

SD:

Standard Deviation

References

  1. Hirsch C, Schajowicz F (1953) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 22:184–231

    Article  Google Scholar 

  2. Hilton RC, Ball J, Benn RT (1980) Annular tears in the dorsolumbar spine. Ann Rheum Dis 39:533–538

    Article  CAS  Google Scholar 

  3. Yu SW, Sether LA, Ho PS et al (1988) Tears of the anulus fibrosus: correlation between MR and pathologic findings in cadavers. AJNR Am J Neuroradiol 9:367–370

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ho PS, Yu SW, Sether LA et al (1988) Progressive and regressive changes in the nucleus pulposus. Part I The neonate Radiology 169:87–91

    CAS  PubMed  Google Scholar 

  5. Ross JS, Modic MT, Masaryk TJ (1989) Tears of the anulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJNR Am J Neuroradiol 10:1251–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gunzburg R, Parkinson R, Moore R et al (1992) A cadaveric study comparing discography, magnetic resonance imaging, histology, and mechanical behavior of the human lumbar disc. Spine 17:417–426

    Article  CAS  Google Scholar 

  7. Vernon-Roberts B, Moore RJ, Fraser RD (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine 32:2797–2804

    Article  Google Scholar 

  8. Sharma A, Pilgram T, Wippold FJ 2nd (2009) Association between annular tears and disk degeneration: a longitudinal study. AJNR Am J Neuroradiol 30(3):500–506

    Article  CAS  Google Scholar 

  9. Osti OL, Vernon-Roberts B, Moore R et al (1992) Annular tears and disc degeneration in the lumbar spine. A post-mortem study of 135 discs. J Bone Joint Surg British 74:678–682

    Article  CAS  Google Scholar 

  10. Yu SW, Haughton VM, Sether LA et al (1989) Comparison of MR and diskography in detecting radial tears of the anulus: a postmortem study. AJNR Am J Neuroradiol 10:1077–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross JS, Modic MT, Masaryk TJ (1990) Tears of the anulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJR Am J Roentgenol 154:159–162

    Article  CAS  Google Scholar 

  12. Saifuddin A, Braithwaite I, White J et al (1998) The value of lumbar spine magnetic resonance imaging in the demonstration of anular tears. Spine 23:453–457

    Article  CAS  Google Scholar 

  13. Berger-Roscher N, Galbusera F, Rasche V et al (2015) Intervertebral disc lesions: visualisation with ultra-high field MRI at 11.7 T. Eur Spine J 24:2488–2495

    Article  Google Scholar 

  14. Sharma A (2017) Method for medical image analysis and manipulation. U.S. Patent 9, 846:937

  15. Madaelil TP, Sharma A, Hildebolt C et al (2018) Using correlative properties of neighboring pixels to improve gray-white differentiation in pediatric head CT images. AJNR Am J Neuroradiol 39(3):577–582

    Article  CAS  Google Scholar 

  16. Orlowski HLP, Smyth MD, Parsons MS et al (2018) Enhancing contrast to noise ratio of hippocampi affected with mesial temporal sclerosis: a case-control study in children undergoing epilepsy surgeries. Clin Neurol Neurosurg 174:144–148

    Article  Google Scholar 

  17. Stunkel L, Salter A, Parsons M et al (2018) Correlative enhancement: evaluation of a new postprocessing algorithm for diagnosis of optic neuritis. Neurology 90(15 supplement) P2:168

    Google Scholar 

  18. Dahi F, Parsons MS, Orlowski HLP et al (2019) Image processing to improve detection of mesial temporal sclerosis in adults. AJNR Am J Neuroradiol 40:798–801

    Article  CAS  Google Scholar 

  19. Strnad BS, Orlowski HLP, Parsons MS et al (2019) An image processing algorithm to aid diagnosis of mesial temporal sclerosis in children: a case-control study. Pediatr Radiol 50(1):98–106

    Article  Google Scholar 

  20. Pfirrmann CW, Metzdorf A, Zanetti M et al (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878

    Article  CAS  Google Scholar 

  21. Brinjikji W, Luetmer PH, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36(4):811–816

    Article  CAS  Google Scholar 

  22. Samartzis D, Borthakur A, Belfer I et al (2015) Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine 15(9):1919–1932

    Article  Google Scholar 

  23. Johannessen W, Auerbach J, Wheaton A et al (2006) Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging. Spine 31(11):1253–1257

    Article  Google Scholar 

  24. Auerbach J, Johannessen W, Borthakur A et al (2006) In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging. Eur Spine J 15(Suppl 3):S338-344

    Article  Google Scholar 

  25. Ludescher B, Effelsberg J, Martirosian P et al (2008) T2-and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 Tesla. J Magn Reson Imaging 28(1):252–257

    Article  Google Scholar 

  26. Kealey SM, Aho T, Delong D et al (2005) Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology 235(2):569–574

    Article  Google Scholar 

  27. Huang L, Liu Y, Ding Y et al (2017) Quantitative evaluation of lumbar intervertebral disc degeneration by axial T2* mapping. Medicine (Baltimore) 96(51):e9393

    Article  Google Scholar 

  28. Weiler C, Nerlich AG, Bachmeier BE et al (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine 30(1):44–53

    Article  Google Scholar 

  29. Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7(4):R732-745

    Article  Google Scholar 

  30. Hoyland JA, Le Maitre CL, Freemont AJ (2008) Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology 47(6):809–814

    Article  CAS  Google Scholar 

  31. Mascarinas A, Julian H, Boachie-Adjei K et al (2016) Regenerative treatment for spinal conditions. Phys Med Rehabil Clin N Am 27(4):1003–1017

    Article  Google Scholar 

  32. Gullung GB, Woodall JW, Tucci MA et al (2011) Platelet-rich plasma effects on degenerative disc disease: analysis of histology and imaging in an animal model. Evid Based Spine Care J 2(4):13–18

    Article  Google Scholar 

  33. Obata S, Akeda K, Imanishi T et al (2012) Effect of autologous platelet-rich plasma-releasate on intervertebral disc degeneration in the rabbit anular puncture model: a preclinical study. Arthritis Res Ther 14(6):R241

    Article  CAS  Google Scholar 

  34. Sawamura K, Ikeda T, Nagae M et al (2009) Characterization of in vivo effects of platelet-rich plasma and biodegradable gelatin hydrogel microspheres on degenerated intervertebral discs. Tissue Eng Part A 15(12):3719–3727

    Article  CAS  Google Scholar 

  35. Tuakli-Wosornu YA, Terry A, Boachie-Adjei K et al (2016) Lumbar intradiskal platelet-rich plasma (PRP) injections: a prospective, double-blind, randomized controlled study. PM R 8(1):1–10

    Article  Google Scholar 

  36. Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater 21:373–383

    Article  CAS  Google Scholar 

  37. Buser Z, Liu J, Thorne KJ et al (2014) Inflammatory response of intervertebral disc cells is reduced by fibrin sealant scaffold in vitro. J Tissue Eng Regen Med 8(1):77–84

    Article  CAS  Google Scholar 

  38. Yin W, Pauza K, Olan WJ et al (2014) Intradiscal injection of fibrin sealant for the treatment of symptomatic lumbar internal disc disruption: results of a prospective multicenter pilot study with 24-month follow-up. Pain Med 15(1):16–31

    Article  Google Scholar 

  39. Coric D, Pettine K, Sumich A et al (2013) Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J Neurosurg Spine 18(1):85–95

    Article  Google Scholar 

  40. Sharma A, Parsons M, Pilgram T (2011) Temporal interactions of degenerative changes in individual components of the lumbar intervertebral discs: a sequential magnetic resonance imaging study in patients less than 40 years of age. Spine 36:1794–1800

    Article  Google Scholar 

  41. Sharma A, Lancaster S, Bagade S et al (2014) Early pattern of degenerative changes in individual components of intervertebral discs in stressed and nonstressed segments of lumbar spine: an in vivo magnetic resonance imaging study. Spine 39:1084–1090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami W. Eldaya.

Ethics declarations

Conflict of interest

Aseem Sharma holds the intellectual property rights to the image processing technology used in this study and have co-founded a company (Correlative Enhancement LLC) with the aim of it future commercialization. All other authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldaya, R.W., Parsons, M.S., Orlowski, H.L.P. et al. Evaluating the effect of a post-processing algorithm in detection of annular fissure on MR imaging. Eur Spine J 30, 2150–2156 (2021). https://doi.org/10.1007/s00586-021-06793-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06793-5

Keywords

Navigation