Skip to main content
Log in

A novel surgical protocol for safe and accurate placement of C1 lateral mass screws in patients with atlas assimilation, basilar invagination and atlantoaxial instability: technical details, accuracy assessment and perioperative complications

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To introduce a novel surgical protocol for safe and accurate placement of C1 lateral mass screws in patients with atlas assimilation, basilar invagination and atlantoaxial instability, and to categorize the screw accuracy and perioperative complications regarding this technique in a large case series.

Methods

Between January 2015 and January 2020, patients who had atlas assimilation, basilar invagination and atlantoaxial instability, and underwent atlantoaxial fixation using C1 lateral mass screws were reviewed. C1 lateral mass screws were placed with a novel surgical protocol following a series key steps, including posterior para-odontoid ligament release, panoramic exposure of the invaginated lateral mass, and diligent protection of the abnormal VA. Screw accuracy and related complications were specifically evaluated.

Results

A total of 434 C1 lateral mass screws were placed. Fifteen screws (3.5%) were classified as unacceptable, 54 screws (12.4%) were classified as acceptable, and 365 screws (84.1%) were classified as ideal. Overall, 96.5% of screws were deemed safe. There were no cases of vascular injury or permanent neurological defects. One patient with an unacceptable screw presented with hypoglossal nerve paralysis and recovered after an immediate revision surgery. Thirty-seven patients complained about occipital neuralgia and were successfully managed with medication.

Conclusion

Placement of C1 lateral mass screws in patients with atlas assimilation, basilar invagination and atlantoaxial instability following this surgical protocol is safe and accurate. Thorough para-odontoid ligamental release, wide exposure of the invaginated lateral mass, and diligent protection of the vertebral artery are critical to maximize the chances of successful screw placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McRae DL, Barnum AS (1953) Occipitalization of the Atlas. Am J Roentgenol Radium Ther Nucl Med 70(1):23–46

    CAS  PubMed  Google Scholar 

  2. Bassi P, Corona C, Contri P, Paiocchi A, Loiero M, Mangoni A (1992) Congenital basilar impression: correlated neurological syndromes. Eur Neurol 32(4):238–243. https://doi.org/10.1159/000116832

    Article  CAS  PubMed  Google Scholar 

  3. Wadia NH (1967) Myelopathy complicating congenital Atlanto-axial dislocation. (A study of 28 cases). Brain J Neurol 90(2):449–472. https://doi.org/10.1093/brain/90.2.449

    Article  CAS  Google Scholar 

  4. Wang C, Yan M, Zhou HT, Wang SL, Dang GT (2006) Open reduction of irreducible atlantoaxial dislocation by transoral anterior atlantoaxial release and posterior internal fixation. Spine (Phila Pa 1976) 31(11):E306-313. https://doi.org/10.1097/01.brs.0000217686.80327.e4

    Article  Google Scholar 

  5. Jian FZ, Chen Z, Wrede KH, Samii M, Ling F (2010) Direct posterior reduction and fixation for the treatment of basilar invagination with atlantoaxial dislocation. Neurosurgery 66(4):678–687. https://doi.org/10.1227/01.NEU.0000367632.45384.5A (Discussion 687)

    Article  PubMed  Google Scholar 

  6. Chandra PS, Prabhu M, Goyal N, Garg A, Chauhan A, Sharma BS (2015) Distraction, compression, extension, and reduction combined with joint remodeling and extra-articular distraction: description of 2 new modifications for its application in basilar invagination and atlantoaxial dislocation: prospective study in 79 cases. Neurosurgery 77(1):67–80. https://doi.org/10.1227/NEU.0000000000000737

    Article  PubMed  Google Scholar 

  7. Chen HJ, Cheng MH, Lau YC (2001) One-stage posterior decompression and fusion using a Luque rod for occipito-cervical instability and neural compression. Spinal cord 39(2):101–108. https://doi.org/10.1038/sj.sc.3101110

    Article  CAS  PubMed  Google Scholar 

  8. Bhatia R, Desouza RM, Bull J, Casey AT (2013) Rigid occipitocervical fixation: indications, outcomes, and complications in the modern era. J Neurosurg Spine 18(4):333–339. https://doi.org/10.3171/2013.1.Spine12645

    Article  PubMed  Google Scholar 

  9. Vale FL, Oliver M, Cahill DW (1999) Rigid occipitocervical fusion. J Neurosurg 91(2 Suppl):144–150. https://doi.org/10.3171/spi.1999.91.2.0144

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman IH, Webb JK (1998) Occipito-cervical fusion using posterior titanium plates. Eur Spine J 7(4):308–312. https://doi.org/10.1007/s005860050080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morita T, Takebayashi T, Takashima H, Yoshimoto M, Ida K, Tanimoto K, Ohnishi H, Fujiwara H, Nagae M, Yamashita T (2015) Mapping occipital bone thickness using computed tomography for safe screw placement. J Neurosurg Spine 23(2):254–258. https://doi.org/10.3171/2014.11.Spine14624

    Article  PubMed  Google Scholar 

  12. Takigawa T, Simon P, Espinoza Orias AA, Hong JT, Ito Y, Inoue N, An HS (2012) Biomechanical comparison of occiput-C1-C2 fixation techniques: C0–C1 transarticular screw and direct occiput condyle screw. Spine (Phila Pa 1976) 37(12):E696-701. https://doi.org/10.1097/BRS.0b013e3182436669

    Article  Google Scholar 

  13. Goel A, Laheri V (1994) Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien) 129(1–2):47–53. https://doi.org/10.1007/bf01400872

    Article  CAS  Google Scholar 

  14. Goel A, Kulkarni AG (2004) Mobile and reducible atlantoaxial dislocation in presence of occipitalized atlas: report on treatment of eight cases by direct lateral mass plate and screw fixation. Spine (Phila Pa 1976) 29 (22):E520–523. doi:https://doi.org/10.1097/01.brs.0000144827.17054.35

  15. Goel A (2015) Is inclusion of the occipital bone necessary/counter-effective for craniovertebral junction stabilization? Journal of craniovertebral junction & spine 6(3):102–104. https://doi.org/10.4103/0974-8237.161588

    Article  Google Scholar 

  16. Goel A, Desai KI, Muzumdar DP (2002) Atlantoaxial fixation using plate and screw method: a report of 160 treated patients. Neurosurgery 51 (6):1351–1356; discussion 1356–1357

  17. Jian FZ, Su CH, Chen Z, Wang XW, Ling F (2012) Feasibility and limitations of C1 lateral mass screw placement in patients of atlas assimilation. Clin Neurol Neurosurg 114(6):590–596. https://doi.org/10.1016/j.clineuro.2011.12.017

    Article  PubMed  Google Scholar 

  18. Yin YH, Yu XG, Qiao GY, Guo SL, Zhang JN (2014) C1 lateral mass screw placement in occipitalization with atlantoaxial dislocation and basilar invagination: a report of 146 cases. Spine (Phila Pa 1976) 39 (24):2013–2018. doi:https://doi.org/10.1097/brs.0000000000000611

  19. Salunke P, Sahoo S, Khandelwal NK, Ghuman MS (2015) Technique for direct posterior reduction in irreducible atlantoaxial dislocation: multi-planar realignment of C1–2. Clin Neurol Neurosurg 131:47–53. https://doi.org/10.1016/j.clineuro.2015.01.025

    Article  PubMed  Google Scholar 

  20. Yin YH, Yu XG, Zhou DB, Wang P, Zhang YZ, Ma XD, Bu B (2012) Three-dimensional configuration and morphometric analysis of the lateral atlantoaxial articulation in congenital anomaly with occipitalization of the atlas. Spine (Phila Pa 1976) 37(3):E170-173. https://doi.org/10.1097/BRS.0b013e318227efe7

    Article  Google Scholar 

  21. Goel A, Prasad A, Shah A, Patil A, Ravikiran V, Ranjan S (2019) Transcranial insertion of Atlas Facetal Screw for atlantoaxial fixation. World Neurosurg 132:e333–e340. https://doi.org/10.1016/j.wneu.2019.08.152

    Article  PubMed  Google Scholar 

  22. Salunke P, Sahoo SK, Deepak AN, Ghuman MS, Khandelwal NK (2015) Comprehensive drilling of the C1–2 facets to achieve direct posterior reduction in irreducible atlantoaxial dislocation. J Neurosurg Spine 23(3):294–302. https://doi.org/10.3171/2014.12.SPINE14310

    Article  PubMed  Google Scholar 

  23. Yin YH, Qiao GY, Yu XG, Tong HY, Zhang YZ (2013) Posterior realignment of irreducible atlantoaxial dislocation with C1–C2 screw and rod system: a technique of direct reduction and fixation. Spine J 13(12):1864–1871. https://doi.org/10.1016/j.spinee.2013.08.014

    Article  PubMed  Google Scholar 

  24. Yin YH, Tong HY, Qiao GY, Yu XG (2016) Posterior reduction of fixed atlantoaxial dislocation and basilar invagination by atlantoaxial facet joint release and fixation: a modified technique with 174 cases. Neurosurgery 78(3):391–400. https://doi.org/10.1227/NEU.0000000000001026 (Discussion 400)

    Article  PubMed  Google Scholar 

  25. Upendra BN, Meena D, Chowdhury B, Ahmad A, Jayaswal A (2008) Outcome-based classification for assessment of thoracic pedicular screw placement. Spine (Phila Pa 1976) 33(4):384–390. https://doi.org/10.1097/BRS.0b013e3181646ba1

    Article  Google Scholar 

  26. Zong R, Li T, Lu L, Qiao G, Yu X (2019) Posterior C2 fixation using Trans-C2 inferior articular process screws: a case series and technical note. World Neurosurg 121:e70–e76. https://doi.org/10.1016/j.wneu.2018.09.014

    Article  PubMed  Google Scholar 

  27. Du YQ, Li T, Ma C, Qiao GY, Yin YH, Yu XG (2020) Biomechanical evaluation of two alternative techniques to the Goel-Harms technique for atlantoaxial fixation: C1 lateral mass-C2 bicortical translaminar screw fixation and C1 lateral mass-C2/3 transarticular screw fixation. J Neurosurg Spine 1–7. https://doi.org/10.3171/2019.11.Spine191178

    Article  Google Scholar 

  28. Du YQ, Yin YH, Qiao GY, Yu XG (2020) C2 medial pedicle screw: a novel “in-out-in” technique as an alternative option for posterior C2 fixation in cases with a narrow C2 isthmus. J Neurosurg Spine: 1–7. https://doi.org/10.3171/2020.2.Spine191517

    Article  Google Scholar 

  29. Wang S, Wang C, Yan M, Zhou H, Dang G (2013) Novel surgical classification and treatment strategy for atlantoaxial dislocations. Spine (Phila Pa 1976) 38(21):E1348-1356. https://doi.org/10.1097/BRS.0b013e3182a1e5e4

    Article  Google Scholar 

  30. Bransford RJ, Freeborn MA, Russo AJ, Nguyen QT, Lee MJ, Chapman JR, Bellabarba C (2012) Accuracy and complications associated with posterior C1 screw fixation techniques: a radiographic and clinical assessment. Spine J 12(3):231–238. https://doi.org/10.1016/j.spinee.2012.02.011

    Article  PubMed  Google Scholar 

  31. Hu Y, Kepler CK, Albert TJ, Yuan ZS, Ma WH, Gu YJ, Xu RM (2013) Accuracy and complications associated with the freehand C-1 lateral mass screw fixation technique: a radiographic and clinical assessment. J Neurosurg Spine 18(4):372–377. https://doi.org/10.3171/2013.1.Spine12724

    Article  PubMed  Google Scholar 

  32. Tokuda K, Miyasaka K, Abe H, Abe S, Takei H, Sugimoto S, Tsuru M (1985) Anomalous atlantoaxial portions of vertebral and posterior inferior cerebellar arteries. Neuroradiology 27(5):410–413. https://doi.org/10.1007/bf00327604

    Article  CAS  PubMed  Google Scholar 

  33. Li T, Yin YH, Qiao GY, Wang HW, Yu XG (2019) Three-dimensional evaluation and classification of the anatomy variations of vertebral artery at the craniovertebral junction in 120 patients of basilar invagination and Atlas occipitalization. Oper Neurosurg (Hagerstown, Md) 17(6):594–602. https://doi.org/10.1093/ons/opz076

    Article  Google Scholar 

  34. Agrawal M, Devarajan LJ, Singh PK, Garg A, Kale SS (2018) Proposal of a new safety margin for placement of C2 pedicle screws on computed tomography angiography. World Neurosurg 120:e282–e289. https://doi.org/10.1016/j.wneu.2018.08.052

    Article  PubMed  Google Scholar 

  35. Bydon M, Mathios D, Macki M, De la Garza-Ramos R, Aygun N, Sciubba DM, Witham TF, Gokaslan ZL, Bydon A, Wolinksy JP (2014) Accuracy of C2 pedicle screw placement using the anatomic freehand technique. Clin Neurol Neurosurg 125:24–27. https://doi.org/10.1016/j.clineuro.2014.07.017

    Article  PubMed  Google Scholar 

  36. Wang HW, Yin YH, Jin YZ, Zong R, Li T, Yu XG, Qiao GY (2019) Morphometric measurements of the C1 lateral mass with congenital occipitalization of the Atlas. World Neurosurg 121:e1–e7. https://doi.org/10.1016/j.wneu.2018.08.016

    Article  PubMed  Google Scholar 

  37. Wang HW, Li XP, Yin YH, Li T, Yu XG (2019) Change of anatomical location of the internal carotid artery relative to the atlas with congenital occipitalization and the relevant clinical implications. World Neurosurg 130:e505–e512. https://doi.org/10.1016/j.wneu.2019.06.138

    Article  PubMed  Google Scholar 

  38. Simsek S, Yigitkanli K, Turba UC, Comert A, Seçkin H, Tekdemir I, Elhan A (2009) Safe zone for C1 lateral mass screws: anatomic and radiological study. Neurosurgery 65(6):1154–1160. https://doi.org/10.1227/01.Neu.0000351779.58845.62 (Discussion 1160)

    Article  PubMed  Google Scholar 

Download references

Funding

Funds from the National Key Research and Development Program of China (No: 2018YFC1002500) was received in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Yu Qiao or Xin-Guang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YQ., Yin, YH., Li, T. et al. A novel surgical protocol for safe and accurate placement of C1 lateral mass screws in patients with atlas assimilation, basilar invagination and atlantoaxial instability: technical details, accuracy assessment and perioperative complications. Eur Spine J 30, 1585–1595 (2021). https://doi.org/10.1007/s00586-021-06780-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06780-w

Keywords

Navigation