Skip to main content
Log in

Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Z-spectral MRI data were analyzed to produce multiparametric metabolic and microenvironmental contrasts for identifying intervertebral discs with/without pain symptom and sore pain.

Methods

Z-spectra data were collected from the lumbar discs of 26 patients with non-specific chronic low bck pain (CLBP) and 21 asymptomatic controls (AC) with a chemical exchange saturation transfer (CEST). Data were fitted to quantify the CEST effects from glycosaminoglycan, amide proton transfer (APT), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer contrast effects, and the direct saturation of water. Multiparametric maps were computed from the fitted peak amplitudes, and the average values were calculated from all five lumber discs. Those parameters were compared between the CLBP and AC groups and between the subgroups with and without (Nsore) sore pain.

Results

The discs in symptomatic patients have lower water content, collagen-bound water and collagen than the discs in AC (P < 0.05). Additionally, Z-sepctral MRI indicated that the discs in the sore subgroup had less water, collagen-bound water and collagen, and likely lower pH compared to the Nsore subgroup (P < 0.05). Lower pH as measured with reduced APT and NOE effects may be an important pathological factor causing sore pain of the back.

Conclusion

Z-spectral MRI with its multiparametric metabolic and microenvironmental contrasts has been demonstrated to identify discs with and without pain symptom or sore pain, providing more important information of CLBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zargar S, Rafie AN, Sosanabadi A, Kamali A (2019) Addition of dexmedetomidine and neostigmine to 1.5% lidocaine and triamcinolone for epidural block to reduce the duration of analgesia in patients suffering from chronic low back pain. J Med Life 12(3):260–265. https://doi.org/10.25122/jml-2019-0043

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ding F, Shao ZW, Xiong LM (2013) Cell death in intervertebral disc degeneration. Apoptosis 18(7):777–785. https://doi.org/10.1007/s10495-013-0839-1

    Article  PubMed  Google Scholar 

  3. Fontana G, See E, Pandit A (2015) Current trends in biologics delivery to restore intervertebral disc anabolism. Adv Drug Deliv Rev 84:146–158. https://doi.org/10.1016/j.addr.2014.08.008

    Article  CAS  PubMed  Google Scholar 

  4. Guterl CC, See EY, Blanquer SB, Pandit A, Ferguson SJ, Benneker LM, Grijpma DW, Sakai D, Eglin D, Alini M, Iatridis JC, Grad S (2013) Challenges and strategies in the repair of ruptured annulus fibrosus. Eur Cell Mater 25:1–21. https://doi.org/10.22203/ecm.v025a01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Navone SE, Peroglio M, Guarnaccia L, Beretta M, Grad S, Paroni M, Cordiglieri C, Locatelli M, Pluderi M, Rampini P, Campanella R, Alini M, Marfia G (2018) Mechanical loading of intervertebral disc modulates microglia proliferation, activation, and chemotaxis. Osteoarthr Cartil 26(7):978–987. https://doi.org/10.1016/j.joca.2018.04.013

    Article  CAS  Google Scholar 

  6. Navone SE, Marfia G, Giannoni A, Beretta M, Guarnaccia L, Gualtierotti R, Nicoli D, Rampini P, Campanella R (2017) Inflammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol 32(6):523–542. https://doi.org/10.14670/HH-11-846

    Article  CAS  PubMed  Google Scholar 

  7. Huang S, Tam V, Cheung KM, Long D, Lv M, Wang T, Zhou G (2011) Stem cell-based approaches for intervertebral disc regeneration. Curr Stem Cell Res Ther 6(4):317–326. https://doi.org/10.2174/157488811797904335

    Article  CAS  PubMed  Google Scholar 

  8. Weishaupt D, Zanetti M, Hodler J, Boos N (1998) MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology 209(3):661–666. https://doi.org/10.1148/radiology.209.3.9844656

    Article  CAS  PubMed  Google Scholar 

  9. Koivisto K, Karppinen J, Haapea M, Jarvinen J, Kyllonen E, Tervonen O, Niinimaki J, Alini M, Lotz J, Dudli S, Samartzis D, Risteli J, Majuri ML, Alenius H, Grad S (2019) The effect of zoledronic acid on serum biomarkers among patients with chronic low back pain and modic changes in lumbar magnetic resonance imaging. Diagnostics (Basel) 9(4):212. https://doi.org/10.3390/diagnostics9040212

    Article  CAS  Google Scholar 

  10. Carragee EJ, Paragioudakis SJ, Khurana S (2000) 2000 Volvo Award winner in clinical studies: lumbar high-intensity zone and discography in subjects without low back problems. Spine (Phila Pa 1976) 25(23):2987–2992. https://doi.org/10.1097/00007632-200012010-00005

    Article  CAS  Google Scholar 

  11. Li L, Zhou Z, Xiong W, Fang J, Li Y, Jiao Z, Scotti A, Li F, Zhu W, Cai K (2019) Characterization of the microstructure of the intervertebral disc in patients with chronic low back pain by diffusion kurtosis imaging. Eur Spine J 28(11):2517–2525. https://doi.org/10.1007/s00586-019-06095-x

    Article  PubMed  Google Scholar 

  12. Pang H, Bow C, Cheung JPY, Zehra U, Borthakur A, Karppinen J, Inoue N, Wang HQ, Luk KDK, Cheung KMC, Samartzis D (2018) The UTE disc sign on MRI: a novel imaging biomarker associated with degenerative spine changes, low back pain, and disability. Spine (Phila Pa 1976) 43(7):503–511. https://doi.org/10.1097/BRS.0000000000002369

    Article  Google Scholar 

  13. Togao O, Hiwatashi A, Wada T, Yamashita K, Kikuchi K, Tokunaga C, Keupp J, Yoneyama M, Honda H (2018) A qualitative and quantitative correlation study of lumbar intervertebral disc degeneration using glycosaminoglycan chemical exchange saturation transfer, pfirrmann grade, and T1-rho. AJNR Am J Neuroradiol 39(7):1369–1375. https://doi.org/10.3174/ajnr.A5657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wada T, Togao O, Tokunaga C, Funatsu R, Yamashita Y, Kobayashi K, Nakamura Y, Honda H (2017) Glycosaminoglycan chemical exchange saturation transfer in human lumbar intervertebral discs: effect of saturation pulse and relationship with low back pain. J Magn Reson Imaging 45(3):863–871. https://doi.org/10.1002/jmri.25397

    Article  PubMed  Google Scholar 

  15. Schleich C, Muller-Lutz A, Eichner M, Schmitt B, Matuschke F, Bittersohl B, Zilkens C, Wittsack HJ, Antoch G, Miese F (2016) Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers. Spine (Phila Pa 1976) 41(2):146–152. https://doi.org/10.1097/BRS.0000000000001144

    Article  Google Scholar 

  16. Liu Q, Tawackoli W, Pelled G, Fan Z, Jin N, Natsuaki Y, Bi X, Gart A, Bae H, Gazit D, Li D (2015) Detection of low back pain using pH level-dependent imaging of the intervertebral disc using the ratio of R1rho dispersion and –OH chemical exchange saturation transfer (RROC). Magn Reson Med 73(3):1196–1205. https://doi.org/10.1002/mrm.25186

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Z, Bez M, Tawackoli W, Giaconi J, Sheyn D, de Mel S, Maya MM, Pressman BD, Gazit Z, Pelled G, Gazit D, Li D (2016) Quantitative chemical exchange saturation transfer MRI of intervertebral disc in a porcine model. Magn Reson Med 76(6):1677–1683. https://doi.org/10.1002/mrm.26457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magn Reson Med 65(4):927–948. https://doi.org/10.1002/mrm.22761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu G, Song X, Chan KW, McMahon MT (2013) Nuts and bolts of chemical exchange saturation transfer MRI. NMR Biomed 26(7):810–828. https://doi.org/10.1002/nbm.2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105(7):2266–2270. https://doi.org/10.1073/pnas.0707666105

    Article  PubMed  Google Scholar 

  21. Singh A, Debnath A, Cai K, Bagga P, Haris M, Hariharan H, Reddy R (2019) Evaluating the feasibility of creatine-weighted CEST MRI in human brain at 7 T using a Z-spectral fitting approach. NMR Biomed 32(12):e4176. https://doi.org/10.1002/nbm.4176

    Article  CAS  PubMed  Google Scholar 

  22. Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R (2015) CEST signal at 2 ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR Biomed 28(1):1–8. https://doi.org/10.1002/nbm.3216

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Witschey W, Goldberg A, Elliott M, Borthakur A, Reddy R (2010) Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Reson Med 64(5):1520–1528. https://doi.org/10.1002/mrm.22533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9(8):1085–1090. https://doi.org/10.1038/nm907

    Article  CAS  PubMed  Google Scholar 

  25. Jones CK, Huang A, Xu J, Edden RA, Schar M, Hua J, Oskolkov N, Zaca D, Zhou J, McMahon MT, Pillai JJ, van Zijl PC (2013) Nuclear overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124. https://doi.org/10.1016/j.neuroimage.2013.03.047

    Article  PubMed  Google Scholar 

  26. Zaiss M, Schmitt B, Bachert P (2011) Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of Z-spectra. J Magn Reson 211(2):149–155. https://doi.org/10.1016/j.jmr.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  27. Desmond KL, Moosvi F, Stanisz GJ (2014) Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med 71(5):1841–1853. https://doi.org/10.1002/mrm.24822

    Article  PubMed  Google Scholar 

  28. Griffith JF, Wang YX, Antonio GE, Choi KC, Yu A, Ahuja AT, Leung PC (2007) Modified pfirrmann grading system for lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 32(24):E708-712. https://doi.org/10.1097/BRS.0b013e31815a59a0

    Article  Google Scholar 

  29. Balague F, Mannion AF, Pellise F, Cedraschi C (2012) Non-specific low back pain. Lancet 379(9814):482–491. https://doi.org/10.1016/S0140-6736(11)60610-7

    Article  PubMed  Google Scholar 

  30. Gussew A, Rzanny R, Gullmar D, Scholle HC, Reichenbach JR (2011) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Neuroimage 54(2):1315–1323. https://doi.org/10.1016/j.neuroimage.2010.09.039

    Article  PubMed  Google Scholar 

  31. Chiarotto A, Boers M, Deyo RA, Buchbinder R, Corbin TP, Costa LOP, Foster NE, Grotle M, Koes BW, Kovacs FM, Lin CC, Maher CG, Pearson AM, Peul WC, Schoene ML, Turk DC, van Tulder MW, Terwee CB, Ostelo RW (2018) Core outcome measurement instruments for clinical trials in nonspecific low back pain. Pain 159(3):481–495. https://doi.org/10.1097/j.pain.0000000000001117

    Article  PubMed  PubMed Central  Google Scholar 

  32. Packham TL, Bean D, Johnson MH, MacDermid JC, Grieve S, McCabe CS, Harden RN (2019) Measurement properties of the SF-MPQ-2 neuropathic qualities subscale in persons with CRPS: validity, responsiveness, and rasch analysis. Pain Med 20(4):799–809. https://doi.org/10.1093/pm/pny202

    Article  PubMed  Google Scholar 

  33. Ludescher B, Effelsberg J, Martirosian P, Steidle G, Markert B, Claussen C, Schick F (2008) T2- and diffusion-maps reveal diurnal changes of intervertebral disc composition: an in vivo MRI study at 1.5 tesla. J Magn Reson Imaging. 28(1):252–257. https://doi.org/10.1002/jmri.21390

    Article  PubMed  Google Scholar 

  34. Kim M, Chan Q, Anthony MP, Cheung KM, Samartzis D, Khong PL (2011) Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3 T: feasibility and initial experience. NMR Biomed 24(9):1137–1144. https://doi.org/10.1002/nbm.1671

    Article  CAS  PubMed  Google Scholar 

  35. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126. https://doi.org/10.1002/mrm.10651

    Article  PubMed  Google Scholar 

  36. Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R (2012) Magnetic resonance imaging of glutamate. Nat Med 18(2):302–306. https://doi.org/10.1038/nm.2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saar G, Zilberman Y, Shinar H, Keinan-Adamsky K, Pelled G, Gazit D, Navon G (2010) Monitoring of the effect of intervertebral disc nucleus pulposus ablation by MRI. NMR Biomed 23(6):554–562. https://doi.org/10.1002/nbm.1493

    Article  PubMed  Google Scholar 

  38. Lotz JC, Haughton V, Boden SD, An HS, Kang JD, Masuda K, Freemont A, Berven S, Sengupta DK, Tanenbaum L, Maurer P, Ranganathan A, Alavi A, Marinelli NL (2012) New treatments and imaging strategies in degenerative disease of the intervertebral disks. Radiology 264(1):6–19. https://doi.org/10.1148/radiol.12110339

    Article  PubMed  Google Scholar 

  39. Keshari KR, Lotz JC, Link TM, Hu S, Majumdar S, Kurhanewicz J (2008) Lactic acid and proteoglycans as metabolic markers for discogenic back pain. Spine (Phila Pa 1976) 33(3):312–317. https://doi.org/10.1097/BRS.0b013e31816201c3

    Article  Google Scholar 

  40. Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum. Mol Imaging Biol 20(4):623–631. https://doi.org/10.1007/s11307-017-1154-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Huiyong Liu and Jing Li from Tongji Hospital for their supports and valuable discussions.

Funding

This study is supported by NIH Grant R21EB023516 (Cai), R21AG053876 (Tai), R01AG061114 (Tai), and Radiology department start-up funds at University of Illinois at Chicago. The study is supported by Youth Fund of National Natural Science Foundation of China 82001782 (Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenZhen Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional (Ethics Committee of Tongji Hospital, TJ-IRB20160923) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhou, Z., Xiong, W. et al. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum. Eur Spine J 30, 1063–1071 (2021). https://doi.org/10.1007/s00586-021-06733-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06733-3

Keywords

Navigation