Skip to main content

Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review

Abstract

Purpose

Macrophages play an important role in mediating damage after Spinal cord injury (SCI) by secreting macrophage migration inhibitory factor (MMIF) as a secondary injury mediator. We aimed to systematically review the role of MMIF as a therapeutic target after traumatic SCI.

Methods

Our systematic review has been performed according to the PRISMA 2009 Checklist. A systematic search in the scientific databases was carried out for studies published before 20 February 2019 from major databases. Two researchers independently screened titles. The risk of bias of eligible articles was assessed, and data were extracted. Finally, we systematically analyzed and interpreted related data.

Results

785 papers were selected for the title and abstract screening. 12 papers were included for data extraction. Eight animal studies were of high quality and the remaining two were of medium quality. One of the two human studies was of poor quality and the other was of fair quality. MMIF as a pro-inflammatory mediator can cause increased susceptibility to glutamate-related neurotoxicity, increased nitrite production, increased ERK activation, and increased COX2/PGE2 signaling pathway activation and subsequent stimulation of CCL5-related chemotaxis. Two human studies and six animal studies demonstrated that MMIF level increases after SCI. MMIF inhibition might be a potential therapeutic target in SCI by multiple different mechanisms (6/12 studies).

Conclusion

Most animal studies demonstrate significant neurologic improvement after administration of MMIF inhibitors, but these inhibitors have not been studied in humans yet. Further clinical trials are need to further understand MMIF inhibitor utility in acute or chronic SCI.

Level of Evidence I

Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Stein A, Panjwani A, Sison C, Rosen L, Chugh R, Metz C, Bank M, Bloom O (2013) Pilot Study: elevated circulating levels of the proinflammatory cytokine macrophage migration inhibitory factor in patients with chronic spinal cord injury. Arch Phys Med Rehabil 94:1498–1507. https://doi.org/10.1016/j.apmr.2013.04.004

    Article  PubMed  Google Scholar 

  2. 2.

    Saxena T, Loomis KH, Pai SB, Karumbaiah L, Gaupp E, Patil K, Patkar R, Bellamkonda RV (2015) Nanocarrier-mediated inhibition of macrophage migration inhibitory factor attenuates secondary injury after spinal cord injury. ACS Nano 9:1492–1505. https://doi.org/10.1021/nn505980z

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Hagg T, Oudega M (2006) Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 23:264–280

    PubMed  Google Scholar 

  4. 4.

    Hall ED (2011) Antioxidant therapies for acute spinal cord injury. Neurotherapeutics 8:152–167

    CAS  Article  Google Scholar 

  5. 5.

    Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75:15–26

    CAS  Article  Google Scholar 

  6. 6.

    Bartholdi D, Schwab ME (1997) Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 9:1422–1438. https://doi.org/10.1111/j.1460-9568.1997.tb01497.x

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Hawthorne AL, Popovich PG (2011) Emerging concepts in myeloid cell biology after spinal cord injury. Neurotherapeutics 8:252–261

    Article  Google Scholar 

  8. 8.

    Nas K, Yazmalar L, Şah V, Aydın A, Öneş K (2015) Rehabilitation of spinal cord injuries. World J Orthop 6:8–16. https://doi.org/10.5312/wjo.v6.i1.8

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269. https://doi.org/10.1093/brain/awl296

    Article  PubMed  Google Scholar 

  10. 10.

    Nishio Y, Koda M, Hashimoto M, Kamada T, Koshizuka S, Yoshinaga K, Onodera S, Nishihira J, Okawa A, Yamazaki M (2009) Deletion of macrophage migration inhibitory factor attenuates neuronal death and promotes functional recovery after compression-induced spinal cord injury in mice. Acta Neuropathol 117:321–328. https://doi.org/10.1007/s00401-008-0476-x

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bloom BR, Bennett B (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 153:80–82. https://doi.org/10.1126/science.153.3731.80

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3(10):791–800. https://doi.org/10.1038/nri1200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Rosengren E, Åman P, Thelin S, Hansson C, Ahlfors S, Björk P, Jacobsson L, Rorsman H (1997) The macrophage migration inhibitory factor MIF is a phenylpyruvate tautomerase. FEBS Lett 417:85–88. https://doi.org/10.1016/S0014-5793(97)01261-1

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Bank M, Stein A, Sison C, Glazer A, Jassal N, McCarthy D, Shatzer M, Hahn B, Chugh R, Davies P, Bloom O (2015) Elevated circulating levels of the pro-inflammatory cytokine macrophage migration inhibitory factor in individuals with acute spinal cord injury. Arch Phys Med Rehabil 96:633–644. https://doi.org/10.1016/j.apmr.2014.10.021

    Article  PubMed  Google Scholar 

  15. 15.

    Chalimoniuk M, King-Pospisil K, Metz CN, Toborek M (2006) Macrophage migration inhibitory factor induces cell death and decreases neuronal nitric oxide expression in spinal cord neurons. Neuroscience 139:1117–1128. https://doi.org/10.1016/j.neuroscience.2005.12.056

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Koda M, Nishio Y, Hashimoto M, Kamada T, Koshizuka S, Yoshinaga K, Onodera S, Nishihira J, Moriya H, Yamazaki M (2004) Up-regulation of macrophage migration-inhibitory factor expression after compression-induced spinal cord injury in rats. Acta Neuropathol 108:31–36. https://doi.org/10.1007/s00401-004-0853-z

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yang Y, Xie Y, Chai H, Fan M, Liu S, Liu H, Bruce I, Wu W (2006) Microarray analysis of gene expression patterns in adult spinal motoneurons after different types of axonal injuries. Brain Res 1075:1–12. https://doi.org/10.1016/j.brainres.2005.12.060

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG (2012) Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 236:351–362. https://doi.org/10.1016/j.expneurol.2012.04.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bacher M, Meinhardt A, Lan HY, Dhabhar FS, Mu W, Metz CN, Chesney JA, Gemsa D, Donnelly T, Atkins RC, Bucala R (1998) MIF expression in the rat brain: implications for neuronal function. Mol Med 4:217–230

    CAS  Article  Google Scholar 

  20. 20.

    Ohta S, Misawa A, Fukaya R, Inoue S, Kanemura Y, Okano H, Kawakami Y, Toda M (2012) Macrophage migration inhibitory factor (MIF) promotes cell survival and proliferation of neural stem/progenitor cells. Development. https://doi.org/10.1242/jcs.102210

    Article  Google Scholar 

  21. 21.

    Leyton-Jaimes MF, Kahn J, Israelson A (2018) Macrophage migration inhibitory factor: a multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 301:83–91

    CAS  Article  Google Scholar 

  22. 22.

    Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41:369–378

    CAS  Article  Google Scholar 

  23. 23.

    Abe R, Shimizu T, Ohkawara A, Nishihira J (2000) Enhancement of macrophage migration inhibitory factor (MIF) expression in injured epidermis and cultured fibroblasts. Biochimica et Biophysica Acta Mol Basis of Dis 1500:1–9. https://doi.org/10.1016/S0925-4439(99)00080-0

    CAS  Article  Google Scholar 

  24. 24.

    Bai F, Asojo OA, Cirillo P, Ciustea M, Ledizet M, Aristoff PA, Leng L, Koski RA, Powell TJ, Bucala R, Anthony KG (2012) A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF). J Biol Chem 287:30653–30663. https://doi.org/10.1074/jbc.M112.385583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Zhou Y, Guo W, Zhu Z, Hu Y, Wang Y, Zhang X, Wang W, Du N, Song T, Yang K, Guan Z, Wang Y, Guo A (2018) Macrophage migration inhibitory factor facilitates production of CCL5 in astrocytes following rat spinal cord injury. J Neuroinflammation 15:253–253. https://doi.org/10.1186/s12974-018-1297-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596. https://doi.org/10.1038/nm1567

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shi X, Leng L, Wang T, Wang W, Du X, Li J, McDonald C, Chen Z, Murphy JW, Lolis E, Noble P, Knudson W, Bucala R (2006) CD44 Is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity 25:595–606. https://doi.org/10.1016/j.immuni.2006.08.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Emmetsberger J, Tsirka SE (2012) Microglial inhibitory factor (MIF/TKP) mitigates secondary damage following spinal cord injury. Neurobiol Dis 47:295–309. https://doi.org/10.1016/j.nbd.2012.05.001

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Gensel JC, Donnelly DJ, Popovich PG (2011) Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Targets 15:505–518

    Article  Google Scholar 

  30. 30.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):1-e34

    Article  Google Scholar 

  31. 31.

    Lammertse DP, Jones LAT, Charlifue SB, Kirshblum SC, Apple DF, Ragnarsson KT, Falci SP, Heary RF, Choudhri TF, Jenkins AL, Betz RR, Poonian D, Cuthbert JP, Jha A, Snyder DA, Knoller N (2012) Autologous incubated macrophage therapy in acute, complete spinal cord injury: Results of the phase 2 randomized controlled multicenter trial. Spinal Cord 50:661–671. https://doi.org/10.1038/sc.2012.39

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Wyndaele JJ (2012) Autologous incubated macrophage treatment failed to show a difference in the neurological outcome in patients with acute, complete spinal cord injury. Spinal Cord 50:645

    CAS  Article  Google Scholar 

  33. 33.

    Hassannejad Z, Sharif-Alhoseini M, Shakouri-Motlagh A, Vahedi F, Zadegan SA, Mokhatab M, Rezvan M, Saadat S, Shokraneh F, Rahimi-Movaghar V (2016) Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 54:579–583. https://doi.org/10.1038/sc.2015.215

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

  35. 35.

    Benedict AL, Mountney A, Hurtado A, Bryan KE, Schnaar RL, Dinkova-Kostova AT, Talalay P (2012) Neuroprotective effects of sulforaphane after contusive spinal cord injury. J Neurotrauma 29:2576–2586. https://doi.org/10.1089/neu.2012.2474

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Huo X, Zhang G, Wu C, Zhang C (2017) Electric field stimulation protects injured spinal cord from secondary inflammatory response in rats. Annu Int Conf IEEE Eng Med Biol Soc 2017:1958–1961. https://doi.org/10.1109/EMBC.2017.8037233

    Article  Google Scholar 

  37. 37.

    Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB (2013) Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation. J Neurol Sci 324:94–99. https://doi.org/10.1016/j.jns.2012.10.009

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Su Y, Wang Y, Zhou Y, Zhu Z, Zhang Q, Zhang X, Wang W, Gu X, Guo A, Wang Y (2017) Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget 8:2719–2730. https://doi.org/10.18632/oncotarget.13739

    Article  PubMed  Google Scholar 

  39. 39.

    Zhang Y, Zhou Y, Chen S, Hu Y, Zhu Z, Wang Y, Du N, Song T, Yang Y, Guo A, Wang Y (2019) Macrophage migration inhibitory factor facilitates prostaglandin E2 production of astrocytes to tune inflammatory milieu following spinal cord injury. J Neuroinflammation 16:85–85. https://doi.org/10.1186/s12974-019-1468-6

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Padovani-Claudio DA, Liu L, Ransohoff RM, Miller RH (2006) Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. Glia 54:471–483. https://doi.org/10.1002/glia.20383

    Article  PubMed  Google Scholar 

  41. 41.

    Merrill JE, Scolding NJ (1999) Mechanisms of damage to myelin and oligodendrocytes and their relevance to disease. Neuropathol Appl Neurobiol 25:435–458

    CAS  Article  Google Scholar 

  42. 42.

    Rosenberg LJ, Teng YD, Wrathall JR (1999) 2,3-Dihydroxy-6-Nitro-7-Sulfamoyl-Benzo(f)Quinoxaline reduces glial loss and acute white matter pathology after experimental spinal cord contusion. J Neurosci 19:464–475. https://doi.org/10.1523/JNEUROSCI.19-01-00464.1999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Streit W, Semple-Rowland S, Hurley S, Miller R, Popovich P, Stokes B (1998) Cytokine mRNA Profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 152:74–87. https://doi.org/10.1006/exnr.1998.6835

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Nikolic I, Vujicic M, Saksida T, Berki T, Stosic-Grujicic S, Stojanovic I (2013) The role of endogenous glucocorticoids in glucose metabolism and immune status of MIF-deficient mice. Eur J Pharmacol 714:498–506. https://doi.org/10.1016/j.ejphar.2013.06.037

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377:68–71. https://doi.org/10.1038/377068a0

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Xu L, Li Y, Sun H, Zhen X, Qiao C, Tian S, Hou T (2013) Current developments of macrophage migration inhibitory factor (MIF) inhibitors. Drug Discov Today 18:592–600. https://doi.org/10.1016/j.drudis.2012.12.013

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Lazarov-Spiegler O, Solomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V, Schwartz M (1996) Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J Off Publ Fed Am Soc Exp Biol 10:1296–1302. https://doi.org/10.1096/fasebj.10.11.8836043

    CAS  Article  Google Scholar 

  48. 48.

    Prewitt CM, Niesman IR, Kane CJ, Houle JD (1997) Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 148:433–443. https://doi.org/10.1006/exnr.1997.6694

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Rabchevsky AG, Sullivan PG, Scheff SW (2007) Temporal-spatial dynamics in oligodendrocyte and glial progenitor cell numbers throughout ventrolateral white matter following contusion spinal cord injury. Glia 55:831–843. https://doi.org/10.1002/glia.20508

    Article  PubMed  Google Scholar 

  50. 50.

    Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821. https://doi.org/10.1038/nm0798-814

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22:295–299. https://doi.org/10.1016/s0166-2236(99)01405-8

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H (2012) Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation 9:40–40. https://doi.org/10.1186/1742-2094-9-40

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci Off J Soc Neurosci 29:13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    CAS  Article  Google Scholar 

  54. 54.

    Kong X, Gao J (2017) Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med 21:941–954. https://doi.org/10.1111/jcmm.13034

    Article  PubMed  Google Scholar 

  55. 55.

    Kigerl K, Popovich P (2006) Drug evaluation: ProCord - a potential cell-based therapy for spinal cord injury. IDrugs : the investigational drugs journal 9:354–360

    CAS  PubMed  Google Scholar 

  56. 56.

    Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min B-H, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25:2066–2073. https://doi.org/10.1634/stemcells.2006-0807

    Article  PubMed  Google Scholar 

  57. 57.

    Donnelly DJ, Gensel JC, Ankeny DP, van Rooijen N, Popovich PG (2009) An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. J Neurosci Methods 181:36–44. https://doi.org/10.1016/j.jneumeth.2009.04.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Sledge J, Andrew Graham W, Westmoreland S, Sejdic E, Miller A, Hoggatt A, Nesathurai S (2013) Spinal cord injury models in non human primates: Are lesions created by sharp instruments relevant to human injuries? Med Hypotheses 81:747–748. https://doi.org/10.1016/j.mehy.2013.07.040

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences (TUMS) for funding and support. We also thank Dr. Mohammad Khazaei for helping to advance this project.

Funding

This work was funded by Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences [Grant Number: 97-02-38-39572].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vafa Rahimi-Movaghar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest except Alex R Vaccaro.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethical approval

The Ethics Committee of Tehran University of Medical Sciences approved this study, and the reference number is No: 97–02-38–342.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piri, S.M., Ghodsi, Z., Shool, S. et al. Macrophage migration inhibitory factor as a therapeutic target after traumatic spinal cord injury: a systematic review. Eur Spine J 30, 1474–1494 (2021). https://doi.org/10.1007/s00586-021-06718-2

Download citation

Keywords

  • Systematic review
  • Spinal cord injury
  • Macrophage migration inhibitory factors
  • macrophage