Skip to main content

Advertisement

Log in

Can the Charlson Comorbidity Index be used to predict the ASA grade in patients undergoing spine surgery?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Background

The American Society of Anaesthesiologists' Physical Status Score (ASA) is a key variable in predictor models of surgical outcome and "appropriate use criteria". However, at the time when such tools are being used in decision-making, the ASA rating is typically unknown. We evaluated whether the ASA class could be predicted statistically from Charlson Comorbidy Index (CCI) scores and simple demographic variables.

Methods

Using established algorithms, the CCI was calculated from the ICD-10 comorbidity codes of 11′523 spine surgery patients (62.3 ± 14.6y) who also had anaesthetist-assigned ASA scores. These were randomly split into training (N = 8078) and test (N = 3445) samples. A logistic regression model was built based on the training sample and used to predict ASA scores for the test sample and for temporal (N = 341) and external validation (N = 171) samples.

Results

In a simple model with just CCI predicting ASA, receiver operating characteristics (ROC) analysis revealed a cut-off of CCI ≥ 1 discriminated best between being ASA ≥ 3 versus < 3 (area under the curve (AUC), 0.70 ± 0.01, 95%CI,0.82–0.84). Multiple logistic regression analyses including age, sex, smoking, and BMI in addition to CCI gave better predictions of ASA (Nagelkerke’s pseudo-R2 for predicting ASA class 1 to 4, 46.6%; for predicting ASA ≥ 3 vs.  < 3, 37.5%). AUCs for discriminating ASA ≥ 3 versus < 3 from multiple logistic regression were 0.83 ± 0.01 (95%CI, 0.82–0.84) for the training sample and 0.82 ± 0.01 (95%CI, 0.81–0.84), 0.85 ± 0.02 (95%CI, 0.80–0.89), and 0.77 ± 0.04 (95%CI,0.69–0.84) for the test, temporal and external validation samples, respectively. Calibration was adequate in all validation samples.

Conclusions

It was possible to predict ASA from CCI. In a simple model, CCI ≥ 1 best distinguished between ASA ≥ 3 and < 3. For a more precise prediction, regression algorithms were created based on CCI and simple demographic variables obtainable from patient interview. The availability of such algorithms may widen the utility of decision aids that rely on the ASA, where the latter is not readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. Three of the comorbidities in the original index of 19 conditions described by Charlson [26], “leukemia”, “lymphoma” and “non-metastatic tumor”, were subsumed under the “any malignancy” category by Deyo et al. [27] when developing the first ICD-coding algorithm; the 17-item index is the one most commonly used today.

  2. The equations are obtainable from the authors as algorithms/prediction tools in Microsoft Excel or FilemakerPro.

References

  1. Mannion AF, Fekete TF, Porchet F, Haschtmann D, Jeszenszky D, Kleinstuck FS (2014) The influence of comorbidity on the risks and benefits of spine surgery for degenerative lumbar disorders. Eur Spine J 23(Suppl 1):S66–71. https://doi.org/10.1007/s00586-014-3189-y

    Article  PubMed  Google Scholar 

  2. Fu KM, Smith JS, Polly DW Jr, Ames CP, Berven SH, Perra JH, McCarthy RE, Knapp DR Jr, Shaffrey CI (2011) Correlation of higher preoperative American Society of Anesthesiology grade and increased morbidity and mortality rates in patients undergoing spine surgery. J Neurosurg Spine 14:470–474. https://doi.org/10.3171/2010.12.SPINE10486

    Article  PubMed  Google Scholar 

  3. Lim S, Edelstein AI, Patel AA, Kim BD, Kim JY (2014) Risk factors for postoperative infections following single level lumbar fusion surgery. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000608

    Article  Google Scholar 

  4. Khor S, Lavallee D, Cizik AM, Bellabarba C, Chapman JR, Howe CR, Lu D, Mohit AA, Oskouian RJ, Roh JR, Shonnard N, Dagal A, Flum DR (2018) Development and validation of a prediction model for pain and functional outcomes after lumbar spine surgery. JAMA Surg 153:634–642. https://doi.org/10.1001/jamasurg.2018.0072

    Article  PubMed  PubMed Central  Google Scholar 

  5. Weaver F, Hynes D, Hopkinson W, Wixson R, Khuri S, Daley J, Henderson WG (2003) Preoperative risks and outcomes of hip and knee arthroplasty in the Veterans Health Administration. J Arthroplasty 18:693–708

    Article  Google Scholar 

  6. Staartjes VE, de Wispelaere MP, Vandertop WP, Schroder ML (2019) Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar discectomy: feasibility of center-specific modeling. Spine J 19:853–861. https://doi.org/10.1016/j.spinee.2018.11.009

    Article  PubMed  Google Scholar 

  7. McGirt MJ, Sivaganesan A, Asher AL, Devin CJ (2015) Prediction model for outcome after low-back surgery: individualized likelihood of complication, hospital readmission, return to work, and 12-month improvement in functional disability. Neurosurg Focus 39:E13. https://doi.org/10.3171/2015.8.FOCUS15338

    Article  PubMed  Google Scholar 

  8. Pennington Z, Lubelski D, Tanenbaum J, Ahmed AK, Rosato M, Passias P, Sciubba DM (2019) Utility of patient-reported symptoms and health conditions for predicting surgical candidacy and utilization of surgery via an outpatient spine clinic nomogram. Clin Spine Surg. https://doi.org/10.1097/BSD.0000000000000838

    Article  PubMed  Google Scholar 

  9. Pearson A, Lurie J, Tosteson T, Zhao W, Abdu W, Weinstein JN (2012) Who should have surgery for spinal stenosis? Treatment effect predictors in SPORT. Spine 37:1791–1802. https://doi.org/10.1097/BRS.0b013e3182634b0400007632-201210010-00002

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scherer EA, Lurie J, Atlas S, Jacobs W, Peul W, Spratt K, Zhao W, Weinstein J, Tosteson T (2015) External comparisons of a treatment outcomes calculator for surgical and nonsurgical treatment of disc herniation. In: International society for the study of the lumbar spine. San Francisco, USA

  11. Bjorgul K, Novicoff WM, Saleh KJ (2010) American society of anesthesiologist physical status score may be used as a comorbidity index in hip fracture surgery. J Arthroplasty 25:134–137. https://doi.org/10.1016/j.arth.2010.04.010

    Article  PubMed  Google Scholar 

  12. Davenport DL, Bowe EA, Henderson WG, Khuri SF, Mentzer RM Jr (2006) National Surgical Quality Improvement Program (NSQIP) risk factors can be used to validate American Society of Anesthesiologists Physical Status Classification (ASA PS) levels. Ann Surg 243:636–641. https://doi.org/10.1097/01.sla.0000216508.95556.cc(discussion 641–634)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schoenfeld AJ, Carey PA, Cleveland AW 3rd, Bader JO, Bono CM (2013) Patient factors, comorbidities, and surgical characteristics that increase mortality and complication risk after spinal arthrodesis: a prognostic study based on 5,887 patients. Spine J 13:1171–1179. https://doi.org/10.1016/j.spinee.2013.02.071

    Article  PubMed  Google Scholar 

  14. Kimmell KT, Algattas H, Joynt P, Schmidt T, Jahromi BS, Silberstein HJ, Vates GE (2015) Risk modeling predicts complication rates for spinal surgery. Spine (Phila Pa 1976) 40:1836–1841. https://doi.org/10.1097/BRS.0000000000001051

    Article  Google Scholar 

  15. Kim BD, Smith TR, Lim S, Cybulski GR, Kim JY (2014) Predictors of unplanned readmission in patients undergoing lumbar decompression: multi-institutional analysis of 7016 patients. J Neurosurg Spine 20:606–616. https://doi.org/10.3171/2014.3.SPINE13699

    Article  PubMed  Google Scholar 

  16. McGirt MJ, Bydon M, Archer KR, Devin CJ, Chotai S, Parker SL, Nian H, Harrell FE Jr, Speroff T, Dittus RS, Philips SE, Shaffrey CI, Foley KT, Asher AL (2017) An analysis from the quality outcomes database, part 1. disability, quality of life, and pain outcomes following lumbar spine surgery: predicting likely individual patient outcomes for shared decision-making. J Neurosurg Spine 27:357–369. https://doi.org/10.3171/2016.11.SPINE16526

    Article  PubMed  Google Scholar 

  17. McGirt MJ, Parker SL, Chotai S, Pfortmiller D, Sorenson JM, Foley K, Asher AL (2017) Predictors of extended length of stay, discharge to inpatient rehab, and hospital readmission following elective lumbar spine surgery: introduction of the Carolina-Semmes Grading Scale. J Neurosurg Spine 27:382–390. https://doi.org/10.3171/2016.12.SPINE16928

    Article  PubMed  Google Scholar 

  18. Mai D, Brand C, Haschtmann D, Pirvu T, Fekete TF, Mannion AF (2019) Non-medical factors significantly influence the length of hospital stay after surgery for degenerative spine disorders. Eur Spine J. https://doi.org/10.1007/s00586-019-06209-5

    Article  PubMed  Google Scholar 

  19. Roder C, Staub L, Dietrich D, Zweig T, Melloh M, Aebi M (2009) Benchmarking with Spine Tango: potentials and pitfalls. Eur Spine J 18(Suppl 3):305–311

    Article  Google Scholar 

  20. Iderberg H, Willers C, Borgstrom F, Hedlund R, Hagg O, Moller H, Ornstein E, Sanden B, Stalberg H, Torevall-Larsson H, Tullberg T, Fritzell P (2019) Predicting clinical outcome and length of sick leave after surgery for lumbar spinal stenosis in Sweden: a multi-register evaluation. Eur Spine J 28:1423–1432. https://doi.org/10.1007/s00586-018-5842-3

    Article  PubMed  Google Scholar 

  21. Schulz GB, Grimm T, Buchner A, Jokisch F, Kretschmer A, Casuscelli J, Ziegelmuller B, Stief CG, Karl A (2018) Surgical high-risk patients with ASA >/= 3 undergoing radical cystectomy: morbidity, mortality, and predictors for major complications in a high-volume tertiary center. Clin Genitourin Cancer 16:e1141–e1149. https://doi.org/10.1016/j.clgc.2018.07.022

    Article  PubMed  Google Scholar 

  22. Reid BC, Alberg AJ, Klassen AC, Koch WM, Samet JM (2001) The American Society of Anesthesiologists' class as a comorbidity index in a cohort of head and neck cancer surgical patients. Head Neck 23:985–994

    Article  CAS  Google Scholar 

  23. Mannion AF, Pittet V, Steiger F, Vader JP, Becker HJ, Porchet F (2014) Development of appropriateness criteria for the surgical treatment of symptomatic lumbar degenerative spondylolisthesis (LDS). Eur Spine J 23:1903–1917. https://doi.org/10.1007/s00586-014-3284-0

    Article  CAS  PubMed  Google Scholar 

  24. Whitmore RG, Stephen J, Stein SC, Campbell PG, Yadla S, Harrop JS, Sharan AD, Maltenfort MG, Ratliff JK (2012) Patient comorbidities and complications after spinal surgery: a societal-based cost analysis. Spine (Phila Pa 1976) 37:1065–1071. https://doi.org/10.1097/BRS.0b013e31823da22d

    Article  Google Scholar 

  25. Whitmore RG, Stephen JH, Vernick C, Campbell PG, Yadla S, Ghobrial GM, Maltenfort MG, Ratliff JK (2014) ASA grade and Charlson Comorbidity Index of spinal surgery patients: correlation with complications and societal costs. Spine J 14:31–38. https://doi.org/10.1016/j.spinee.2013.03.011

    Article  PubMed  Google Scholar 

  26. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  CAS  Google Scholar 

  27. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45:613–619

    Article  CAS  Google Scholar 

  28. Harris MB, Reichmann WM, Bono CM, Bouchard K, Corbett KL, Warholic N, Simon JB, Schoenfeld AJ, Maciolek L, Corsello P, Losina E, Katz JN (2010) Mortality in elderly patients after cervical spine fractures. J Bone Joint Surg Am 92:567–574. https://doi.org/10.2106/JBJS.I.00003

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ondeck NT, Bohl DD, Bovonratwet P, McLynn RP, Cui JJ, Shultz BN, Lukasiewicz AM, Grauer JN (2018) Discriminative ability of commonly used indices to predict adverse outcomes after posterior lumbar fusion: a comparison of demographics, ASA, the modified Charlson Comorbidity Index, and the modified Frailty Index. Spine J 18:44–52. https://doi.org/10.1016/j.spinee.2017.05.028

    Article  PubMed  Google Scholar 

  30. Arrigo RT, Park J, Mindea SA, Kalanithi P, Boakye M, Carragee EJ, Cheng I, Alamin T (2011) Predictors of survival after surgical treatment of spinal metastasis. Neurosurgery 68:674–681. https://doi.org/10.1227/NEU.0b013e318207780c

    Article  PubMed  Google Scholar 

  31. Wang MY, Green BA, Shah S, Vanni S, Levi AD (2003) Complications associated with lumbar stenosis surgery in patients older than 75 years of age. Neurosurg Focus 14:e7

    Article  Google Scholar 

  32. Howe CR, Agel J, Lee MJ, Bransford RJ, Wagner TA, Bellabarba C, Chapman JR (2011) The morbidity and mortality of fusions from the thoracic spine to the pelvis in the adult population. Spine (Phila Pa 1976) 36:1397–1401. https://doi.org/10.1097/BRS.0b013e3181f453e2

    Article  Google Scholar 

  33. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139

    Article  Google Scholar 

  34. Sundararajan V, Henderson T, Perry C, Muggivan A, Quan H, Ghali WA (2004) New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J Clin Epidemiol 57:1288–1294. https://doi.org/10.1016/j.jclinepi.2004.03.012

    Article  PubMed  Google Scholar 

  35. Halfon P, Eggli Y, van Melle G, Chevalier J, Wasserfallen JB, Burnand B (2002) Measuring potentially avoidable hospital readmissions. J Clin Epidemiol 55:573–587. https://doi.org/10.1016/s0895-4356(01)00521-2

    Article  PubMed  Google Scholar 

  36. Sundararajan V, Quan H, Halfon P, Fushimi K, Luthi JC, Burnand B, Ghali WA (2007) International Methodology Consortium for Coded Health I (2007) Cross-national comparative performance of three versions of the ICD-10 Charlson index. Med Care 45:1210–1215. https://doi.org/10.1097/MLR.0b013e3181484347

    Article  PubMed  Google Scholar 

  37. Chaudhry S, Jin L, Meltzer D (2005) Use of a self-report-generated Charlson Comorbidity Index for predicting mortality. Med Care 43:607–615. https://doi.org/10.1097/01.mlr.0000163658.65008.ec

    Article  PubMed  Google Scholar 

  38. Habbous S, Chu KP, Harland LT, La Delfa A, Fadhel E, Sun B, Xu W, Wong A, Howell D, Ringash J, Waldron J, O'Sullivan B, Goldstein D, Huang SH, Liu G (2013) Validation of a one-page patient-reported Charlson comorbidity index questionnaire for upper aerodigestive tract cancer patients. Oral Oncol 49:407–412. https://doi.org/10.1016/j.oraloncology.2012.11.010

    Article  PubMed  Google Scholar 

  39. Katz JN, Chang LC, Sangha O, Fossel AH, Bates DW (1996) Can comorbidity be measured by questionnaire rather than medical record review? Med Care 34:73–84. https://doi.org/10.1097/00005650-199601000-00006

    Article  CAS  PubMed  Google Scholar 

  40. Lavelle EA, Cheney R, Lavelle WF (2015) Mortality prediction in a vertebral compression fracture population: the asa physical status score versus the charlson comorbidity index. Int j Spine Surg 9:63. https://doi.org/10.14444/2063

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang W, McWilliams DF, Ingham SL, Doherty SA, Muthuri S, Muir KR, Doherty M (2011) Nottingham knee osteoarthritis risk prediction models. Ann Rheum Dis 70:1599–1604. https://doi.org/10.1136/ard.2011.149807

    Article  PubMed  Google Scholar 

  42. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd (eds) Chapter 5. Wiley, NewYork

  43. Sankar A, Johnson SR, Beattie WS, Tait G, Wijeysundera DN (2014) Reliability of the American Society of Anesthesiologists physical status scale in clinical practice. Br J Anaesth 113:424–432. https://doi.org/10.1093/bja/aeu100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin BI (2019) Personal Communication; data from High value health collaborative cohort https://www.highvaluehealthcare.org/In, Dartmouth and Hitchcock Medical Center, USA

  45. Fitz-Henry J (2011) The ASA classification and peri-operative risk. Ann R Coll Surg Engl 93:185–187. https://doi.org/10.1308/rcsann.2011.93.3.185a

    Article  PubMed  PubMed Central  Google Scholar 

  46. Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47:1245–1251

    Article  CAS  Google Scholar 

  47. Ratliff JK, Balise R, Veeravagu A, Cole TS, Cheng I, Olshen RA, Tian L (2016) Predicting occurrence of spine surgery complications using “Big Data” modeling of an administrative claims database. JBJS 98:824–834. https://doi.org/10.2106/jbjs.15.00301

    Article  Google Scholar 

  48. Chitale R, Campbell PG, Yadla S, Whitmore RG, Maltenfort MG, Ratliff JK (2015) International classification of disease clinical modification 9 modeling of a patient comorbidity score predicts incidence of perioperative complications in a nationwide inpatient sample assessment of complications in spine surgery. J Spinal Disord Tech 28:126–133. https://doi.org/10.1097/BSD.0b013e318270dad7

    Article  PubMed  Google Scholar 

  49. Veeravagu A, Li A, Swinney C, Tian L, Moraff A, Azad TD, Cheng I, Alamin T, Hu SS, Anderson RL, Shuer L, Desai A, Park J, Olshen RA, Ratliff JK (2017) Predicting complication risk in spine surgery: a prospective analysis of a novel risk assessment tool. J Neurosurg Spine 27:81–91. https://doi.org/10.3171/2016.12.spine16969

    Article  PubMed  Google Scholar 

  50. Campbell PG, Yadla S, Nasser R, Malone J, Maltenfort MG, Ratliff JK (2012) Patient comorbidity score predicting the incidence of perioperative complications: assessing the impact of comorbidities on complications in spine surgery. J Neurosurg Spine 16:37–43. https://doi.org/10.3171/2011.9.spine11283

    Article  PubMed  Google Scholar 

  51. Oichi T, Oshima Y, Takeshita K, Chikuda H, Tanaka S (2015) Evaluation of comorbidity indices for a study of patient outcomes following cervical decompression surgery: a retrospective cohort study. Spine (Phila Pa 1976) 40:1941–1947. https://doi.org/10.1097/brs.0000000000001153

    Article  Google Scholar 

  52. Zweig T, Enke J, Mannion AF, Sobottke R, Melloh M, Freeman BJ, Aghayev E, Spine Tango C (2017) Is the duration of pre-operative conservative treatment associated with the clinical outcome following surgical decompression for lumbar spinal stenosis? A study based on the Spine Tango Registry. Eur Spine J 26:488–500. https://doi.org/10.1007/s00586-016-4882-9

    Article  PubMed  Google Scholar 

  53. Aghayev E, Mannion AF, Fekete T, Janssen S, Goodwin K, Zwahlen M, Berlemann U, Lorenz T, Spine Tango Registry G (2019) Risk factors for negative global treatment outcomes in lumbar spinal stenosis surgery: a mixed effects model analysis of data from an international spine registry. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.12.147

    Article  PubMed  Google Scholar 

  54. Bundesamt für Statistik (2019) Medizinisches Kodierungshandbuch. Bundesamt für Statistik, Neuchâtel, Switzerland

    Google Scholar 

  55. Parenti N, Reggiani ML, Percudani D, Melotti RM (2016) Reliability of American society of anesthesiologists physical status classification. Indian J Anaesth 60:208–214. https://doi.org/10.4103/0019-5049.177875

    Article  PubMed  PubMed Central  Google Scholar 

  56. Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, Januel JM, Sundararajan V (2011) Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol 173:676–682. https://doi.org/10.1093/aje/kwq433

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jon Lurie and Adam Pearson (Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA) for sharing their data allowing us to perform the external validation analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Mannion.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannion, A.F., Bianchi, G., Mariaux, F. et al. Can the Charlson Comorbidity Index be used to predict the ASA grade in patients undergoing spine surgery?. Eur Spine J 29, 2941–2952 (2020). https://doi.org/10.1007/s00586-020-06595-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06595-1

Keywords

Navigation