Skip to main content

Advertisement

Log in

Cyclin-dependent kinase 12 (CDK12) in chordoma: prognostic and therapeutic value

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To determine the cyclin-dependent kinase 12 (CDK12) expression in chordoma patient tissues and cell lines, its correlation with oncologic outcomes, and its function in chordoma cell proliferation.

Methods

A chordoma tissue microarray was constructed from fifty-six patient specimens and examined by immunohistochemistry to measure CDK12 expression and its correlation to patient clinical characteristics and survival. CDK12 expression in chordoma cell lines and patient tissues was evaluated via western blot. CDK12 specific small interfering RNA (siRNA) was applied to determine whether its inhibition attenuated chordoma cell growth and proliferation.

Results

CDK12 was expressed in the majority of chordoma specimens, with notably higher expression in patients with recurrent or metastatic disease. High CDK12 expression was an independent prognostic predictor for shorter overall and progression-free survival in chordoma by univariate and multivariate analysis. Western blot analysis revealed that CDK12 was also highly expressed in chordoma cell lines, with CDK12 specific small interfering RNA (siRNA) mediated knockdown decreasing proliferation and inducing apoptosis. Mechanistically, inhibition of CDK12 decreased phosphorylation of RNA polymerase II (RNAP II) and the anti-apoptotic proteins Survivin and Mcl-1.

Conclusion

High expression of CDK12 is an independent predictor of poor prognosis in chordoma. Inhibition of CDK12 significantly decreased chordoma cell proliferation and induced apoptosis. Our results support CDK12 as a novel prognostic biomarker and therapeutic target in chordoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pan Y, Lu L, Chen J, Zhong Y, Dai Z (2018) Analysis of prognostic factors for survival in patients with primary spinal chordoma using the SEER Registry from 1973 to 2014. J Orthop Surg Res 13(1):76. https://doi.org/10.1186/s13018-018-0784-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ (2012) Chordoma: current concepts, management, and future directions. Lancet Oncol 13(2):e69–E76. https://doi.org/10.1016/S1470-2045(11)70337-0

    Article  PubMed  Google Scholar 

  3. Stacchiotti S, Longhi A, Ferraresi V, Grignani G, Comandone A, Stupp R, Bertuzzi A, Tamborini E, Pilotti S, Messina A, Spreafico C, Gronchi A, Amore P, Vinaccia V, Casali PG (2012) Phase II study of imatinib in advanced chordoma. J Clin Oncol 30(9):914–920. https://doi.org/10.1200/JCO.2011.35.3656

    Article  CAS  PubMed  Google Scholar 

  4. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  5. Liao Y, Feng Y, Shen J, Hornicek FJ, Duan Z (2016) The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev 35(2):151–163. https://doi.org/10.1007/s10555-015-9601-1

    Article  CAS  PubMed  Google Scholar 

  6. Murphy CG, Dickler MN (2015) The role of CDK4/6 inhibition in breast cancer. Oncologist 20(5):483–490. https://doi.org/10.1634/theoncologist.2014-0443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang YX, Sicinska E, Czaplinski JT, Remillard SP, Moss S, Wang Y, Brain C, Loo A, Snyder EL, Demetri GD, Kim S, Kung AL, Wagner AJ (2014) Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer Ther 13(9):2184–2193. https://doi.org/10.1158/1535-7163.MCT-14-0387

    Article  CAS  PubMed  Google Scholar 

  8. von Witzleben A, Goerttler LT, Marienfeld R, Barth H, Lechel A, Mellert K, Bohm M, Kornmann M, Mayer-Steinacker R, von Baer A, Schultheiss M, Flanagan AM, Moller P, Bruderlein S, Barth TF (2015) Preclinical characterization of novel chordoma cell systems and their targeting by pharmocological inhibitors of the CDK4/6 cell-cycle pathway. Cancer Res 75(18):3823–3831. https://doi.org/10.1158/0008-5472.CAN-14-3270

    Article  CAS  Google Scholar 

  9. VanArsdale T, Boshoff C, Arndt KT, Abraham RT (2015) Molecular pathways: targeting the cyclin D-CDK4/6 axis for cancer treatment. Clin Cancer Res 21(13):2905–2910. https://doi.org/10.1158/1078-0432.CCR-14-0816

    Article  CAS  PubMed  Google Scholar 

  10. Fisher RP (2019) Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 10(2):47–56. https://doi.org/10.1080/21541264.2018.1553483

    Article  CAS  PubMed  Google Scholar 

  11. Morales F, Giordano A (2016) Overview of CDK9 as a target in cancer research. Cell Cycle 15(4):519–527. https://doi.org/10.1080/15384101.2016.1138186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McLaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, Smid M, Zhang Y, van de Water B (2019) A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res 21(1):77. https://doi.org/10.1186/s13058-019-1161-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z (2019) Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in ovarian cancer. FASEB J 33(5):5990–6000. https://doi.org/10.1096/fj.201801789RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kretz AL, Schaum M, Richter J, Kitzig EF, Engler CC, Leithauser F, Henne-Bruns D, Knippschild U, Lemke J (2017) CDK9 is a prognostic marker and therapeutic target in pancreatic cancer. Tumour Biol 39(2):1010428317694304. https://doi.org/10.1177/1010428317694304

    Article  CAS  PubMed  Google Scholar 

  15. Sun B, Mason S, Wilson RC, Hazard SE, Wang Y, Fang R, Wang Q, Yeh ES, Yang M, Roberts TM, Zhao JJ, Wang Q (2020) Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers. Oncogene 39(1):50–63. https://doi.org/10.1038/s41388-019-0953-9

    Article  CAS  PubMed  Google Scholar 

  16. Ma H, Seebacher NA, Hornicek FJ, Duan Z (2019) Cyclin-dependent kinase 9 (CDK9) is a novel prognostic marker and therapeutic target in osteosarcoma. EBioMedicine 39:182–193. https://doi.org/10.1016/j.ebiom.2018.12.022

    Article  PubMed  Google Scholar 

  17. Duan Z, Zhang J, Choy E, Harmon D, Liu X, Nielsen P, Mankin H, Gray NS, Hornicek FJ (2012) Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clin Cancer Res 18(17):4580–4588. https://doi.org/10.1158/1078-0432.CCR-12-1157

    Article  CAS  PubMed  Google Scholar 

  18. Liu T, Shen JK, Choy E, Zhang Y, Mankin HJ, Hornicek FJ, Duan Z (2018) CDK4 expression in chordoma: a potential therapeutic target. J Orthop Res 36(6):1581–1589. https://doi.org/10.1002/jor.23819

    Article  CAS  PubMed  Google Scholar 

  19. Sharifnia T, Wawer MJ, Chen T, Huang QY, Weir BA, Sizemore A, Lawlor MA, Goodale A, Cowley GS, Vazquez F, Ott CJ, Francis JM, Sassi S, Cogswell P, Sheppard HE, Zhang T, Gray NS, Clarke PA, Blagg J, Workman P, Sommer J, Hornicek F, Root DE, Hahn WC, Bradner JE, Wong KK, Clemons PA, Lin CY, Kotz JD, Schreiber SL (2019) Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med 25(2):292–300. https://doi.org/10.1038/s41591-018-0312-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lui GYL, Grandori C, Kemp CJ (2018) CDK12: an emerging therapeutic target for cancer. J Clin Pathol 71(11):957–962. https://doi.org/10.1136/jclinpath-2018-205356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naidoo K, Wai PT, Maguire SL, Daley F, Haider S, Kriplani D, Campbell J, Mirza H, Grigoriadis A, Tutt A, Moseley PM, Abdel-Fatah TMA, Chan SYT, Madhusudan S, Rhaka EA, Ellis IO, Lord CJ, Yuan Y, Green AR, Natrajan R (2018) Evaluation of CDK12 protein expression as a potential novel biomarker for DNA damage response-targeted therapies in breast cancer. Mol Cancer Ther 17(1):306–315. https://doi.org/10.1158/1535-7163.MCT-17-0760

    Article  CAS  PubMed  Google Scholar 

  22. Ekumi KM, Paculova H, Lenasi T, Pospichalova V, Bosken CA, Rybarikova J, Bryja V, Geyer M, Blazek D, Barboric M (2015) Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res 43(5):2575–2589. https://doi.org/10.1093/nar/gkv101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Geng M, Yang Y, Cao X, Dang L, Zhang T, Zhang L (2019) Targeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma. Biochem Biophys Res Commun 520(3):544–550. https://doi.org/10.1016/j.bbrc.2019.10.052

    Article  CAS  PubMed  Google Scholar 

  24. Ji J, Zhou C, Wu J, Cai Q, Shi M, Zhang H, Yu Y, Zhu Z, Zhang J (2019) Expression pattern of CDK12 protein in gastric cancer and its positive correlation with CD8(+) cell density and CCL12 expression. Int J Med Sci 16(8):1142–1148. https://doi.org/10.7150/ijms.34541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bayles I, Krajewska M, Pontius WD, Saiakhova A, Morrow JJ, Bartels C, Lu J, Faber ZJ, Fedorov Y, Hong ES, Karnuta JM, Rubin B, Adams DJ, George RE, Scacheri PC (2019) Ex vivo screen identifies CDK12 as a metastatic vulnerability in osteosarcoma. J Clin Invest 129(10):4377–4392. https://doi.org/10.1172/JCI127718

    Article  PubMed  PubMed Central  Google Scholar 

  26. Behling F, Schittenhelm J (2018) Tissue microarrays—translational biomarker research in the fast lane. Exp Rev Mole Diagn 18(10):833–835. https://doi.org/10.1080/14737159.2018.1522252

    Article  CAS  Google Scholar 

  27. Scheil S, Bruderlein S, Liehr T, Starke H, Herms J, Schulte M, Moller P (2001) Genome-wide analysis of sixteen chordomas by comparative genomic hybridization and cytogenetics of the first human chordoma cell line, U-CH1. Genes Chromosomes Cancer 32(3):203–211. https://doi.org/10.1002/gcc.1184

    Article  CAS  PubMed  Google Scholar 

  28. Bruderlein S, Sommer JB, Meltzer PS, Li S, Osada T, Ng D, Moller P, Alcorta DA, Kelley MJ (2010) Molecular characterization of putative chordoma cell lines. Sarcoma 2010:630129. https://doi.org/10.1155/2010/630129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu X, Nielsen GP, Rosenberg AE, Waterman PR, Yang W, Choy E, Sassi S, Yang S, Harmon DC, Yang C, Schwab JH, Kobayashi E, Mankin HJ, Xavier R, Weissleder R, Duan Z, Hornicek FJ (2012) Establishment and characterization of a novel chordoma cell line: CH22. J Orthop Res 30(10):1666–1673. https://doi.org/10.1002/jor.22113

    Article  CAS  PubMed  Google Scholar 

  30. Franco R, Caraglia M, Facchini G, Abbruzzese A, Botti G (2011) The role of tissue microarray in the era of target-based agents. Expert Rev Anticancer Ther 11(6):859–869. https://doi.org/10.1586/era.11.65

    Article  CAS  PubMed  Google Scholar 

  31. Simon R (2010) Applications of tissue microarray technology. Methods Mol Biol 664:1–16. https://doi.org/10.1007/978-1-60761-806-5_1

    Article  CAS  PubMed  Google Scholar 

  32. Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, Cimermancic P, Ule J, Peterlin BM (2011) The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25(20):2158–2172. https://doi.org/10.1101/gad.16962311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen C, Yang HL, Chen KW, Wang GL, Lu J, Yuan Q, Gu YP, Luo ZP (2013) High expression of survivin in sacral chordoma. Med Oncol 30(2):529. https://doi.org/10.1007/s12032-013-0529-4

    Article  CAS  PubMed  Google Scholar 

  34. Froehlich EV, Rinner B, Deutsch AJ, Meditz K, Knausz H, Troppan K, Scheipl S, Wibmer C, Leithner A, Liegl B, Lohberger B (2015) Examination of survivin expression in 50 chordoma specimens—a histological and in vitro study. J Orthop Res 33(5):771–778. https://doi.org/10.1002/jor.22819

    Article  CAS  PubMed  Google Scholar 

  35. Yang C, Hornicek FJ, Wood KB, Schwab JH, Choy E, Mankin H, Duan Z (2010) Blockage of Stat3 with CDDO-Me inhibits tumor cell growth in chordoma. Spine (Phila Pa 1976) 35(18):1668–1675. https://doi.org/10.1097/brs.0b013e3181c2d2b4

    Article  Google Scholar 

  36. Zhang Y, Shi C, Yin L, Zhou W, Wang H, Seng J, Li W (2017) Inhibition of Mcl-1 enhances Pevonedistat-triggered apoptosis in osteosarcoma cells. Exp Cell Res 358(2):234–241. https://doi.org/10.1016/j.yexcr.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  37. Lucas KM, Mohana-Kumaran N, Lau D, Zhang XD, Hersey P, Huang DC, Weninger W, Haass NK, Allen JD (2012) Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clin Cancer Res 18(3):783–795. https://doi.org/10.1158/1078-0432.CCR-11-1166

    Article  CAS  PubMed  Google Scholar 

  38. Wang C, Wang H, Lieftink C, du Chatinier A, Gao D, Jin G, Jin H, Beijersbergen RL, Qin W, Bernards R (2020) CDK12 inhibition mediates DNA damage and is synergistic with sorafenib treatment in hepatocellular carcinoma. Gut 69(4):727–736. https://doi.org/10.1136/gutjnl-2019-318506

    Article  CAS  PubMed  Google Scholar 

  39. Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, Duckett DR (2019) Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell 36(5):545–558. https://doi.org/10.1016/j.ccell.2019.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported, in part, by the Department of Orthopaedic Surgery at UCLA.

Funding

There is no financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Duan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanindratarn, P., Dean, D.C., Feng, W. et al. Cyclin-dependent kinase 12 (CDK12) in chordoma: prognostic and therapeutic value. Eur Spine J 29, 3214–3228 (2020). https://doi.org/10.1007/s00586-020-06543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-020-06543-z

Keywords

Navigation