The prone transpsoas technique: preliminary radiographic results of a multicenter experience



The lateral lumbar interbody fusion (LLIF) is a safe and effective technique to treat a vast range of lumbar disorders. However, the technique is also burdened by some problems. A new approach to the lateral lumbar interbody fusion was devised to solve or reduce some of the problems regarding the lateral approach. Its principal difference from the standard LLIF relies on positioning the patient in a prone decubitus, which might lead to an increase in the intradiscal lordosis.


A retrospective, multicentric, non-randomized study to evaluate segmental and regional lordosis following prone transpsoas (PTP) approach to LLIF. All patients undergoing prone transpsoas surgery at the involved institutions were included. Patients with low-quality images not allowing the measurements of the required spinopelvic parameters were excluded. Measurements included pre- and postoperative index-level segmental lordosis, lumbar lordosis, pelvic incidence, and pelvic tilt.


Thirty-two (32) patients were included in the study, in which 23 underwent single-level, six (6) underwent two-level, Two (2) underwent three-level, and one underwent four-level PTP. Mean index level segmental lordosis increased from 8.7° to 14.8°(p < 0.001); lumbar lordosis (L1-S1) increased from 42.1° to 45.8° (p = 0.11), although after excluding an outlier value L1-S1 lordosis results were 41.9° pre-op to 46.7° post-op (p = 0.003). Twenty-two (22) patients had a pre-op PI-LL mismatch of 10° or more, while at the postoperative visit, only 12 patients had a mismatch outside of 10° (p = 0.01).


The prone transpsoas technique is feasible and is associated with a significant gain of segmental lordosis and correction of spinopelvic alignment parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 19 June 2020

    Unfortunately, the third and fourth author names have been incorrectly published in the original publication. The complete correct names are given below.


  1. 1.

    Waldrop R, Cheng J, Devin C et al (2015) The burden of spinal disorders in the elderly. Neurosurgery 77(Suppl 4):S46–50.

    Article  PubMed  Google Scholar 

  2. 2.

    GBD Compare|IHME Viz Hub. Accessed 22 Oct 2019

  3. 3.

    Murray CJL, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wynne-Jones G, Cowen J, Jordan JL et al (2014) Absence from work and return to work in people with back pain: a systematic review and meta-analysis. Occup Environ Med 71:448–456.

    Article  PubMed  Google Scholar 

  5. 5.

    Xu DS, Walker CT, Godzik J et al (2018) Minimally invasive anterior, lateral, and oblique lumbar interbody fusion: a literature review. Ann transl med 6:104.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Mobbs RJ, Phan K, Malham G et al (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2–18.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6:435–443.

    Article  PubMed  Google Scholar 

  8. 8.

    Goyal A, Kerezoudis P, Alvi MA et al (2018) Outcomes following minimally invasive lateral transpsoas interbody fusion for degenerative low grade lumbar spondylolisthesis: a systematic review. Clin Neurol Neurosurg 167:122–128.

    Article  PubMed  Google Scholar 

  9. 9.

    Elowitz E, Yanni D, Chwajol M et al (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 54:201–206.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pereira EAC, Farwana M, Lam KS (2017) Extreme lateral interbody fusion relieves symptoms of spinal stenosis and low-grade spondylolisthesis by indirect decompression in complex patients. J Clin Neurosci 35:56–61.

    Article  PubMed  Google Scholar 

  11. 11.

    Pimenta L, Turner AWL, Dooley ZA et al (2012) Biomechanics of lateral interbody spacers: going wider for going stiffer. Sci World J 2012:1–6.

    Article  Google Scholar 

  12. 12.

    Saadeh YS, Joseph JR, Smith BW et al (2019) Comparison of segmental lordosis and global spinopelvic alignment after single-level lateral lumbar interbody fusion or transforaminal lumbar interbody fusion. World Neurosurg 126:e1374–e1378.

    Article  PubMed  Google Scholar 

  13. 13.

    Nakashima H, Kanemura T, Satake K et al (2019) Comparative radiographic outcomes of lateral and posterior lumbar interbody fusion in the treatment of degenerative lumbar kyphosis. Asian Spine J.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Salzmann SN, Shue J, Hughes AP (2017) Lateral lumbar interbody fusion—outcomes and complications. Curr Rev Musculoskeletal Med 10:539–546.

    Article  Google Scholar 

  15. 15.

    Sembrano JN, Horazdovsky RD, Sharma AK et al (2017) Do lordotic cages provide better segmental lordosis versus nonlordotic cages in lateral lumbar interbody fusion (LLIF)? Clin Spine Surg 30:E338–E343.

    Article  PubMed  Google Scholar 

  16. 16.

    Nakashima H, Kanemura T, Satake K et al (2019) Factors affecting postoperative sagittal alignment after lateral lumbar interbody fusion in adult spinal deformity: posterior osteotomy, anterior longitudinal ligament rupture, and endplate injury. Asian Spine J 13:738–745.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Akbarnia B, Mundis G, Moazzaz P et al (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. J Spinal Disord Technol 27:29–39.

    Article  Google Scholar 

  18. 18.

    Park S-J, Lee C-S, Chung S-S et al (2017) The ideal cage position for achieving both indirect neural decompression and segmental angle restoration in lateral lumbar interbody fusion (LLIF). Clin Spine Surg 30:E784–E790.

    Article  PubMed  Google Scholar 

  19. 19.

    Graphpad (2010) Detecting outliers with Grubbs' test. In: GraphPad Knowledgebase. Accessed 24 Oct 2019

  20. 20.

    Louie PK, Varthi AG, Narain AS et al (2018) Stand-alone lateral lumbar interbody fusion for the treatment of symptomatic adjacent segment degeneration following previous lumbar fusion. Spine J 18:2025–2032.

    Article  PubMed  Google Scholar 

  21. 21.

    Castro C, Oliveira L, Amaral R et al (2014) Is the lateral transpsoas approach feasible for the treatment of adult degenerative scoliosis? Clin Orthop 472:1776–1783.

    Article  PubMed  Google Scholar 

  22. 22.

    Elowitz EH (2015) Central and foraminal indirect decompression in MIS lateral interbody fusion (XLIF): video lecture. Eur spine J 24(Suppl 3):449–450.

    Article  PubMed  Google Scholar 

  23. 23.

    Ziino C, Konopka JA, Ajiboye RM et al (2018) Single position versus lateral-then-prone positioning for lateral interbody fusion and pedicle screw fixation. J Spine Surg 4:717–724.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Ahlquist S, Park HY, Gatto J et al (2018) Does approach matter? A comparative radiographic analysis of spinopelvic parameters in single-level lumbar fusion. Spine J 18:1999–2008.

    Article  PubMed  Google Scholar 

  25. 25.

    Rothrock RJ, McNeill IT, Yaeger K et al (2018) Lumbar lordosis correction with interbody fusion: systematic literature review and analysis. World Neurosurg 118:21–31.

    Article  PubMed  Google Scholar 

  26. 26.

    Miyazaki M, Ishihara T, Abe T et al (2019) Effect of intraoperative position in single-level transforaminal lumbar interbody fusion at the L4/5 level on segmental and overall lumbar lordosis in patients with lumbar degenerative disease. Medicine (Baltimore) 98:e17316.

    Article  Google Scholar 

  27. 27.

    Harimaya K, Lenke LG, Mishiro T et al (2009) Increasing lumbar lordosis of adult spinal deformity patients via intraoperative prone positioning. Spine 34:2406–2412.

    Article  PubMed  Google Scholar 

  28. 28.

    Yson SC, Sembrano JN, Santos ERG et al (2014) Does prone repositioning before posterior fixation produce greater lordosis in lateral lumbar interbody fusion (LLIF)? J Spinal Disord Tech 27:364–369.

    Article  PubMed  Google Scholar 

  29. 29.

    Lamartina C, Berjano P (2020) Prone single-position extreme lateral interbody fusion (Pro-XLIF): preliminary results. Eur Spine J.

    Article  PubMed  Google Scholar 

Download references


There was no funding for this research.

Author information



Corresponding author

Correspondence to Gabriel Pokorny.

Ethics declarations

Conflict of interest

Dr. Luiz Pimenta receives consultant fees from Alphatec; Dr. Rodrigo Amaral receives consultant fees from Alphatec, Nuvasive, and Astrolab; Dr. Antoine Tohmeh receives consultancy fee and royalties from Alphatec and has research support from RTI/Zyga and Mainstay Medical; Dr. William Taylor receives consultancy fees and royalties from Alphatec. The other authors have none conflicts to disclose

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pimenta, L., Amaral, R., Taylor, W. et al. The prone transpsoas technique: preliminary radiographic results of a multicenter experience. Eur Spine J (2020).

Download citation


  • Lateral lumbar interbody fusion
  • Segmental lordosis
  • Sagittal alignment
  • Innovation
  • Prone position