Alzakri A, Vergari C, Van den Abbeele M et al (2019) Global sagittal alignment and proximal junctional kyphosis in adolescent idiopathic scoliosis. Spine Deform 7:236–244. https://doi.org/10.1016/j.jspd.2018.06.014
Article
PubMed
Google Scholar
Pasha S, Aubin C-E, Sangole AP et al (2014) Three-dimensional spinopelvic relative alignment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 39:564–570. https://doi.org/10.1097/brs.0000000000000193
Article
Google Scholar
Dubousset J (1990) CD instrumentation in pelvic tilt. Orthopade 19:300–308
CAS
PubMed
Google Scholar
Burwell RG, Aujla RK, Kirby AS et al (2008) Ultrasound femoral anteversion (FAV) and tibial torsion (TT) after school screening for adolescent idiopathic scoliosis (AIS). Stud Health Technol Inform 140:225–230
CAS
PubMed
Google Scholar
Saji MJ, Upadhyay SS, Leong JC (1995) Increased femoral neck-shaft angles in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 20:303–311
CAS
Article
Google Scholar
Márkus I, Schlégl ÁT, Burkus M et al (2018) The effect of coronal decompensation on the biomechanical parameters in lower limbs in adolescent idiopathic scoliosis. Rev Chir Orthop Traumatol 104:441. https://doi.org/10.1016/j.rcot.2018.06.018
Article
Google Scholar
Lazennec J-Y, Brusson A, Rousseau M-A (2011) Hip–spine relations and sagittal balance clinical consequences. Eur Spine J 20:1–13. https://doi.org/10.1007/s00586-011-1937-9
Article
Google Scholar
Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Eng 15:457–466. https://doi.org/10.1080/10255842.2010.540758
CAS
Article
Google Scholar
Massaad A, Assi A, Bakouny Z et al (2016) Three-dimensional evaluation of skeletal deformities of the pelvis and lower limbs in ambulant children with cerebral palsy. Gait Posture. https://doi.org/10.1016/j.gaitpost.2016.06.029
Article
PubMed
Google Scholar
Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169–1181
CAS
Article
Google Scholar
Lazennec J-Y, Charlot N, Gorin M et al (2004) Hip-spine relationship: a radio-anatomical study for optimization in acetabular cup positioning. Surg Radiol Anat 26:136–144. https://doi.org/10.1007/s00276-003-0195-x
Article
PubMed
Google Scholar
Anda S, Svenningsen S, Grontvedt T, Benum P (1990) Pelvic inclination and spatial orientation of the acetabulum. A radiographic, computed tomographic and clinical investigation. Acta Radiol 31:389–394
CAS
Article
Google Scholar
Tönnis D, Heinecke A (1999) Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am 81:1747–1770. https://doi.org/10.2106/JBJS.L.00710
Article
PubMed
Google Scholar
Anda S, Svenningsen S, Dale LG, Benum P (1986) The acetabular sector angle of the adult hip determined by computed tomography. Acta Radiol Diagn (Stockh) 27:443–447
CAS
Article
Google Scholar
Assi A, Presedo A, Baudoin A et al (2012) Specific 3D reconstruction for children lower limbs using a low dose biplanar X-ray system. Reproducibility of clinical parameters for cerebral palsy patients. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/10255840701479065
Article
Google Scholar
Rampal V, Rohan P-Y, Assi A et al (2018) Lower-limb lengths and angles in children older than six years: reliability and reference values by EOS® stereoradiography. Orthop Traumatol Surg Res 104:389–395. https://doi.org/10.1016/j.otsr.2017.10.007
CAS
Article
PubMed
Google Scholar
Rehm J, Germann T, Akbar M et al (2017) 3D-modeling of the spine using EOS imaging system: inter-reader reproducibility and reliability. PLoS ONE 12:1–13. https://doi.org/10.1371/journal.pone.0171258
CAS
Article
Google Scholar
Assi A, Chaibi Y, Presedo A et al (2013) Three-dimensional reconstructions for asymptomatic and cerebral palsy children’s lower limbs using a biplanar X-ray system: a feasibility study. Eur J Radiol 82:2359–2364. https://doi.org/10.1016/J.EJRAD.2013.07.006
Article
PubMed
Google Scholar
Stem ESE, O’Connor MIM, Kransdorf MJM et al (2006) Computed tomography analysis of acetabular anteversion and abduction. Skeletal Radiol 35:385–389. https://doi.org/10.1007/s00256-006-0086-4
Article
PubMed
Google Scholar
Tannast M, Hanke MS, Zheng G et al (2015) What are the radiographic reference values for acetabular under- and overcoverage? Clin Orthop Relat Res. https://doi.org/10.1007/s11999-014-4038-3
Article
PubMed
PubMed Central
Google Scholar
Nault M, Allard P, Le Blanc R et al (2002) Relations between standing stability and body posture parameters in adolescent idiopathic scoliosis. Spine 27:1911–1917. https://doi.org/10.1097/01.BRS.0000025720.91214.DB
Article
PubMed
Google Scholar
Schmitz MR, Bittersohl B, Zaps D et al (2013) Spectrum of radiographic femoroacetabular impingement morphology in adolescents and young adults: an EOS-based double-cohort study. J Bone Joint Surg Am 95:e90. https://doi.org/10.2106/JBJS.L.01030
Article
PubMed
Google Scholar
Segreto FA, Vasquez-Montes D, Brown AE et al (2018) Incidence, trends, and associated risks of developmental hip dysplasia in patients with Early Onset and Adolescent Idiopathic Scoliosis. J Orthop 15:874–877. https://doi.org/10.1016/j.jor.2018.08.015
Article
PubMed
PubMed Central
Google Scholar
Henebry A, Gaskill T (2013) The effect of pelvic tilt on radiographic markers of acetabular coverage. Am J Sports Med 41:2599–2603. https://doi.org/10.1177/0363546513500632
Article
PubMed
Google Scholar
Buckland AJ, Vigdorchik J, Schwab FJ et al (2015) Acetabular anteversion changes due to spinal deformity correction: bridging the gap between hip and spine surgeons. J Bone Joint Surg Am 97:1913–1920. https://doi.org/10.2106/JBJS.O.00276
Article
PubMed
Google Scholar