Complication rates of different discectomy techniques for symptomatic lumbar disc herniation: a systematic review and meta-analysis



This meta-analysis aims to compare the complication rates of discectomy/microdiscectomy (OD/MD), microendoscopic discectomy (MED), percutaneous endoscopic lumbar discectomy (PELD), percutaneous laser disc decompression (PLDD), and tubular discectomy for symptomatic lumbar disc herniation (LDH) using general classification and modified Clavien–Dindo classification (MCDC) schemes.


We searched three online databases for randomized controlled trials (RCTs) and cohort studies. Overall complication rates and complication rates per the above-mentioned classification schemes were considered as primary outcomes. Risk ratio (RR) and their 95% confidence intervals (CI) were evaluated.


Seventeen RCTs and 20 cohort studies met the eligibility criteria. RCTs reporting OD/MD, MED, PELD, PLDD, and tubular discectomies had overall complication rates of 16.8% and 16.1%, 21.2%, 5.8%, 8.4%, and 25.8%, respectively. Compared with the OD/MD, there was moderate-quality evidence suggesting that PELD had a lower risk of overall complications (RR = 0.52, 95% CI 0.29–0.91) and high-quality evidence suggesting a lower risk of Type I complications per MCDC (RR = 0.37, 95% CI 0.16–0.81). Compared with the OD/MD data from cohort studies, there was low-quality evidence suggesting a higher risk of Type III complications per MCDC (RR = 10.83, 95% CI 1.29–91.18) for MED, higher risk of reherniations (RR = 1.67,95% CI 1.05–2.64) and reoperations (RR = 1.75, 95% CI 1.20–2.55) for PELD, lower risk of overall complication rates (RR = 0.42, 95% CI 0.25–0.70), post-operative complication rates (RR = 0.42, 95% CI 0.25–0.70), Type III complications per MCDC (RR = 0.39, 95% CI 0.22–0.69), reherniations (RR = 0.56, 95% CI 0.33–0.97) and reoperations (RR = 0.39, 95% CI 0.22–0.69) for PLDD.


Compared with the OD/MD, results of this meta-analysis suggest that PELD has a lower risk of overall complications and a lower risk of complications necessitating conservative treatment.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Gibson JN, Cowie JG, Iprenburg M (2012) Transforaminal endoscopic spinal surgery: the future ‘gold standard’ for discectomy? A review. Surgeon 10:290–296.

    Article  PubMed  Google Scholar 

  2. 2.

    Postacchini F (1999) Management of herniation of the lumbar disc. J Bone Jt Surg Br 81:567–576

    CAS  Article  Google Scholar 

  3. 3.

    Luo X, Pietrobon R, Sun SX, Liu GG, Gey L (2004) Estimates and patterns of direct health care expenditures among individuals with back pain in the United States. Spine (Phila Pa 1976) 29:79–86.

    Article  Google Scholar 

  4. 4.

    Kreiner DS, Hwang SW, Easa JE, Resnick DK, Baisden JL, Bess S, Cho CH, DePalma MJ, Dougherty P 2nd, Fernand R, Ghiselli G, Hanna AS, Lamer T, Lisi AJ, Mazanec DJ, Meagher RJ, Nucci RC, Patel RD, Sembrano JN, Sharma AK, Summers JT, Taleghani CK, Tontz WL Jr, Toton JF, North American Spine S (2014) An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J 14:180–191.

    Article  PubMed  Google Scholar 

  5. 5.

    Haines SJ, Jordan N, Boen JR, Nyman JA, Oldridge NB, Lindgren BR (2002) Discectomy strategies for lumbar disc herniation: results of the LAPDOG trial. J Clin Neurosci 9:411–417.

    Article  PubMed  Google Scholar 

  6. 6.

    Thomé C, Barth M, Scharf J, Schmiedek P (2005) Outcome after lumbar sequestrectomy compared with microdiscectomy: a prospective randomized study. J Neurosurg Spine 2:271–278.

    Article  PubMed  Google Scholar 

  7. 7.

    Barrios C, Ahmed M, Arrótegui J, Björnsson A, Gillström P (1990) Microsurgery versus standard removal of the herniated lumbar disc. A 3-year comparison in 150 cases. Acta Orthop Scand 61:399–403

    CAS  Article  Google Scholar 

  8. 8.

    Silverplats K, Lind B, Zoëga B, Halldin K, Gellerstedt M, Brisby H, Rutberg L (2010) Clinical factors of importance for outcome after lumbar disc herniation surgery: long-term follow-up. Eur Spine J 19:1459–1467.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Virk SS, Diwan A, Phillips FM, Sandhu H, Khan SN (2017) What is the rate of revision discectomies after primary discectomy on a national scale? Clin Orthop Relat Res 475:2752–2762.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Rasouli MR, Rahimi-Movaghar V, Shokraneh F, Moradi-Lakeh M, Chou R (2014) Minimally invasive discectomy versus microdiscectomy/open discectomy for symptomatic lumbar disc herniation. Cochrane Database Syst Rev.

    Article  PubMed  Google Scholar 

  11. 11.

    Deen HG, Fenton DS, Lamer TJ (2003) Minimally invasive procedures for disorders of the lumbar spine. Mayo Clin Proc 78:1249–1256

    Article  Google Scholar 

  12. 12.

    Patel N, Singh V (2018) Percutaneous lumbar laser discectomy: literature review and a retrospective analysis of 65 cases. Photomed Laser Surg 36:518–521.

    Article  PubMed  Google Scholar 

  13. 13.

    Abrishamkar S, Kouchakzadeh M, Mirhosseini A, Tabesh H, Rezvani M, Moayednia A, Ganjeifar B, Mahabadi A, Yousefi E, Kooshki AM (2015) Comparison of open surgical discectomy versus plasma-laser nucleoplasty in patients with single lumbar disc herniation. J Res Med Sci 20:1133–1137.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Brouwer PA, Brand R, van den Akker-van Marle ME, Jacobs WCH, Schenk B, van den Berg-Huijsmans AA, Koes BW, Arts MA, van Buchem MA, Peul WC (2017) Percutaneous laser disc decompression versus conventional microdiscectomy for patients with sciatica: two-year results of a randomised controlled trial. Interv Neuroradiol 23:313–324.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Foley KT, Smith MM, Rampersaud YR (1999) Microendoscopic approach to far-lateral lumbar disc herniation. Neurosurg Focus 7:e5

    CAS  Article  Google Scholar 

  16. 16.

    Kambin P (1992) Arthroscopic microdiscectomy. Arthroscopy 8:287–295

    CAS  Article  Google Scholar 

  17. 17.

    Alvi MA, Kerezoudis P, Wahood W, Goyal A, Bydon M (2018) Operative approaches for lumbar disc herniation: a systematic review and multiple treatment meta-analysis of conventional and minimally invasive surgeries. World Neurosurg 114(391–407):e392.

    Article  Google Scholar 

  18. 18.

    Anichini G, Landi A, Caporlingua F, Beer-Furlan A, Brogna C, Delfini R, Passacantilli E (2015) Lumbar endoscopic microdiscectomy: where are we now? An updated literature review focused on clinical outcome, complications, and rate of recurrence. Biomed Res Int 2015:417801.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Li X, Chang H, Meng X (2018) Tubular microscopes discectomy versus conventional microdiscectomy for treating lumbar disk herniation: systematic review and meta-analysis. Medicine 97:e9807.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Riesenburger RI, David CA (2006) Lumbar microdiscectomy and microendoscopic discectomy. Minim Invasive Ther Allied Technol 15:267–270.

    Article  PubMed  Google Scholar 

  21. 21.

    Clark AJ, Safaee MM, Khan NR, Brown MT, Foley KT (2017) Tubular microdiscectomy: techniques, complication avoidance, and review of the literature. Neurosurg Focus 43:E7.

    Article  PubMed  Google Scholar 

  22. 22.

    Yorimitsu E, Chiba K, Toyama Y, Hirabayashi K (2001) Long-term outcomes of standard discectomy for lumbar disc herniation: a follow-up study of more than 10 years. Spine (Phila Pa 1976) 26:652–657

    CAS  Article  Google Scholar 

  23. 23.

    Shriver MF, Xie JJ, Tye EY, Rosenbaum BP, Kshettry VR, Benzel EC, Mroz TE (2015) Lumbar microdiscectomy complication rates: a systematic review and meta-analysis. Neurosurg Focus 39:E6.

    Article  PubMed  Google Scholar 

  24. 24.

    Kraemer R, Wild A, Haak H, Herdmann J, Krauspe R, Kraemer J (2003) Classification and management of early complications in open lumbar microdiscectomy. Eur Spine J 12:239–246.

    Article  PubMed  Google Scholar 

  25. 25.

    Arts MP, Brand R, van den Akker ME, Koes BW, Bartels RH, Tan WF, Peul WC (2011) Tubular diskectomy vs conventional microdiskectomy for the treatment of lumbar disk herniation: 2-year results of a double-blind randomized controlled trial. Neurosurgery 69:135–144. 144)

    Article  PubMed  Google Scholar 

  26. 26.

    Ding ZM, Tao YQ (2017) Clinical outcomes of percutaneous transforaminal endoscopic discectomy versus fenestration discectomy in patients with lumbar disc herniation. J Int Transl Med 5:29–33.

    Article  Google Scholar 

  27. 27.

    Garg B, Nagraja UB, Jayaswal A (2011) Microendoscopic versus open discectomy for lumbar disc herniation: a prospective randomised study. J Orthop Surg 19:30–34

    Article  Google Scholar 

  28. 28.

    Lebude B, Yadla S, Albert T, Anderson DG, Harrop JS, Hilibrand A, Maltenfort M, Sharan A, Vaccaro AR, Ratliff JK (2010) Defining “complications” in spine surgery: neurosurgery and orthopedic spine surgeons’ survey. J Spinal Disord Tech 23:493–500.

    Article  PubMed  Google Scholar 

  29. 29.

    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

    Article  Google Scholar 

  30. 30.

    Landriel Ibanez FA, Hem S, Ajler P, Vecchi E, Ciraolo C, Baccanelli M, Tramontano R, Knezevich F, Carrizo A (2011) A new classification of complications in neurosurgery. World Neurosurg 75:709–715. 604–711)

    Article  PubMed  Google Scholar 

  31. 31.

    Chen X, Chamoli U, Lapkin S, Castillo JV, Diwan AD (2019) Complication rates of different discectomy techniques for the treatment of lumbar disc herniation: a network meta-analysis. Eur Spine J 28:2588–2601.

    Article  PubMed  Google Scholar 

  32. 32.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Furlan AD, Malmivaara A, Chou R, Maher CG, Deyo RA, Schoene M, Bronfort G, van Tulder MW (2015) 2015 Updated method guideline for systematic reviews in the cochrane back and neck group. Spine 40:1660–1673.

    Article  PubMed  Google Scholar 

  34. 34.

    Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analysis. Eur J Epidemiol 25(9):603–605.

    Article  Google Scholar 

  35. 35.

    Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354:1896–1900.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406.

    Article  PubMed  Google Scholar 

  38. 38.

    Franke J, Greiner-Perth R, Boehm H, Mahlfeld K, Grasshoff H, Allam Y, Awiszus F (2009) Comparison of a minimally invasive procedure versus standard microscopic discotomy: a prospective randomised controlled clinical trial. Eur Spine J 18:992–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hermantin FU, Peters T, Quartararo L, Kambin P (1999) A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Joint Surg Am 81:958–965

    CAS  Article  Google Scholar 

  40. 40.

    Huang TJ, Hsu RW, Li YY, Cheng CC (2005) Less systemic cytokine response in patients following microendoscopic versus open lumbar discectomy. J Orthop Res 23:406–411

    CAS  Article  Google Scholar 

  41. 41.

    Hussein M (2016) Minimal incision, multifidus-sparing microendoscopic diskectomy versus conventional microdiskectomy for highly migrated intracanal lumbar disk herniations. J Am Acad Orthop Surg 24:805–813.

    Article  PubMed  Google Scholar 

  42. 42.

    Hussein M, Abdeldayem A, Mattar MM (2014) Surgical technique and effectiveness of microendoscopic discectomy for large uncontained lumbar disc herniations: a prospective, randomized, controlled study with 8 years of follow-up. Eur Spine J 23:1992–1999.

    Article  PubMed  Google Scholar 

  43. 43.

    Mayer HM, Brock M (1993) Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy. J Neurosurg 78:216–225

    CAS  Article  Google Scholar 

  44. 44.

    Pan L, Zhang P, Yin Q (2014) Comparison of tissue damages caused by endoscopic lumbar discectomy and traditional lumbar discectomy: a randomised controlled trial. Int J Surg 12:534–537.

    Article  PubMed  Google Scholar 

  45. 45.

    Pan Z, Ha Y, Yi S, Cao K (2016) Efficacy of transforaminal endoscopic spine system (TESSYS) technique in treating lumbar disc herniation. Med Sci Monit 22:530–539.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Righesso O, Falavigna A, Avanzi O (2007) Comparison of open discectomy with microendoscopic discectomy in lumbar disc herniations: results of a randomized controlled trial. Neurosurgery 61:545–549.

    Article  PubMed  Google Scholar 

  47. 47.

    Ruetten S, Komp M, Merk H, Godolias G (2008) Full-endoscopic interlaminar and transforaminal lumbar discectomy versus conventional microsurgical technique: a prospective, randomized, controlled study. Spine (Phila Pa 1976) 33:931–939.

    Article  Google Scholar 

  48. 48.

    Ryang YM, Oertel MF, Mayfrank L, Gilsbach JM, Rohde V (2008) Standard open microdiscectomy versus minimal access trocar microdiscectomy: results of a prospective randomized study. Neurosurgery 62:174–181.

    Article  PubMed  Google Scholar 

  49. 49.

    Teli M, Lovi A, Brayda-Bruno M, Zagra A, Corriero A, Giudici F, Minoia L (2010) Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J 19:443–450.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ahn SS, Kim SH, Kim DW, Lee BH (2016) Comparison of outcomes of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for young adults: a retrospective matched cohort study. World Neurosurg 86:250–258

    Article  Google Scholar 

  51. 51.

    Choi KC, Kim JS, Park CK (2016) Percutaneous endoscopic lumbar discectomy as an alternative to open lumbar microdiscectomy for large lumbar disc herniation. Pain Phys 19:E291–E300

    Google Scholar 

  52. 52.

    Schizas C, Tsiridis E, Saksena J (2005) Microendoscopic discectomy compared with standard microsurgical discectomy for treatment of uncontained or large contained disc herniations. Neurosurgery 57:357–360 (discussion 357–360)

    PubMed  Google Scholar 

  53. 53.

    Bennis S, Scarone P, Lepeintre JF, Aldea S, Gaillard S (2009) Transtubular versus microsurgical approach for single lumbar disc herniation: a prospective study. Eur J Orthop Surg Traumatol 19:535–540

    Article  Google Scholar 

  54. 54.

    Bhatia PS, Chhabra HS, Mohapatra B, Nanda A, Sangodimath G, Kaul R (2016) Microdiscectomy or tubular discectomy: is any of them a better option for management of lumbar disc prolapse. J Craniovertebral Junct Spine 7:146–152

    Article  Google Scholar 

  55. 55.

    Cahill KS, Levi AD, Cummock MD, Liao W, Wang MY (2013) A comparison of acute hospital charges after tubular versus open microdiskectomy. World Neurosurg 80:208–212.

    Article  PubMed  Google Scholar 

  56. 56.

    Choi YY, Yoon SH, Ha Y, Kim EY, Park HC, Park CO (2006) Posterior microscopic lesionectomy for lumbar disc herniation with tubular retraction using METRx(TM) system. J Korean Neurosurg Soc 40:406–411

    Google Scholar 

  57. 57.

    German JW, Adamo MA, Hoppenot RG, Blossom JH, Nagle HA (2008) Perioperative results following lumbar discectomy: comparison of minimally invasive discectomy and standard microdiscectomy. Neurosurg Focus 25:E20.

    Article  PubMed  Google Scholar 

  58. 58.

    Hsu HT, Chang SJ, Yang SS, Chai CL (2013) Learning curve of full-endoscopic lumbar discectomy. Eur Spine J 22:727–733

    Article  Google Scholar 

  59. 59.

    Kim MJ, Lee SH, Jung ES, Son BG, Choi ES, Shin JH, Sung JK, Chi YC (2007) Targeted percutaneous transforaminal endoscopic diskectomy in 295 patients: comparison with results of microscopic diskectomy. Surg Neurol 68:623–631.

    Article  PubMed  Google Scholar 

  60. 60.

    Kim SK, Lee SC, Park SW (2018) Trans-sacral epiduroscopic laser decompression versus the microscopic open interlaminar approach for L5-S1 disc herniation. J Spinal Cord Med 43:46–52

    Article  Google Scholar 

  61. 61.

    Kleinpeter G, Markowitsch MM, Bock F (1995) Percutaneous endoscopic lumbar discectomy: minimally invasive, but perhaps only minimally useful? Surg Neurol 43:534–541

    CAS  Article  Google Scholar 

  62. 62.

    Lau D, Han SJ, Lee JG, Lu DC, Chou D (2011) Minimally invasive compared to open microdiscectomy for lumbar disc herniation. J Clin Neurosci 18:81–84

    Article  Google Scholar 

  63. 63.

    Lee P, Liu JC, Fessler RG (2011) Perioperative results following open and minimally invasive single-level lumbar discectomy. J Clin Neurosci 18:1667–1670

    Article  Google Scholar 

  64. 64.

    Liu WG, Wu XT, Guo JH, Zhuang SY, Teng GJ (2010) Long-term outcomes of patients with lumbar disc herniation treated with percutaneous discectomy: comparative study with microendoscopic discectomy. Cardiovasc Interv Radiol 33:780–786

    Article  Google Scholar 

  65. 65.

    Liu X, Yuan S, Tian Y, Wang L, Gong L, Zheng Y, Li J (2018) Comparison of percutaneous endoscopic transforaminal discectomy, microendoscopic discectomy, and microdiscectomy for symptomatic lumbar disc herniation: minimum 2-year follow-up results. J Neurosurg Spine 28:317–325.

    Article  PubMed  Google Scholar 

  66. 66.

    Nakagawa H, Kamimura M, Uchiyama S, Takahara K, Itsubo T, Miyasaka T (2003) Microendoscopic discectomy (MED) for lumbar disc prolapse. J Clin Neurosci 10:231–235

    Article  Google Scholar 

  67. 67.

    Tassi GP (2006) Comparison of results of 500 microdiscectomies and 500 percutaneous laser disc decompression procedures for lumbar disc herniation. Photomed Laser Surg 24:694–697

    Article  Google Scholar 

  68. 68.

    Wu X, Zhuang S, Mao Z, Chen H (2006) Microendoscopic discectomy for lumbar disc herniation: surgical technique and outcome in 873 consecutive cases. Spine (Phila Pa 1976) 31:2689–2694.

    Article  Google Scholar 

  69. 69.

    Yoon SM, Ahn SS, Kim KH, Kim YD, Cho JH, Kim DH (2012) Comparative study of the outcomes of percutaneous endoscopic lumbar discectomy and microscopic lumbar discectomy using the tubular retractor system based on the VAS, ODI, and SF-36. Korean J Spine 9:215–222.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Ruan W, Feng F, Liu Z, Xie J, Cai L, Ping A (2016) Comparison of percutaneous endoscopic lumbar discectomy versus open lumbar microdiscectomy for lumbar disc herniation: a meta-analysis. Int J Surg 31:86–92.

    Article  PubMed  Google Scholar 

  71. 71.

    Qin R, Liu B, Hao J, Zhou P, Yao Y, Zhang F, Chen X (2018) Percutaneous endoscopic lumbar discectomy versus posterior open lumbar microdiscectomy for the treatment of symptomatic lumbar disc herniation: a systemic review and meta-analysis. World Neurosurg 120:352–362.

    Article  PubMed  Google Scholar 

  72. 72.

    Kim M, Lee S, Kim HS, Park S, Shim SY, Lim DJ (2018) A comparison of percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for lumbar disc herniation in the Korean: a meta-analysis. Biomed Res Int 2018:9073460.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, Norris SL, Williams JW Jr, Atkins D, Meerpohl J, Schunemann HJ (2011) GRADE guidelines: 4. Rating the quality of evidence–study limitations (risk of bias). J Clin Epidemiol 64:407–415.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to thank Mark Donoghoe (Stats Central, UNSW) for his help with developing the database search strategy.


This work was supported by a Research Training Program scholarship and a University Postgraduate Award from the Australian Government and UNSW to XLC and a Scientia scholarship from UNSW to VASR. A Clinical Travelling Fellowship from the International Society for the Study of the Lumbar Spine (ISSLS) in 2018 further supported this work. JLVC was funded by an unrestricted educational and research donation by Nuvasive Australia.

Author information



Corresponding author

Correspondence to Uphar Chamoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Chamoli, U., Vargas Castillo, J. et al. Complication rates of different discectomy techniques for symptomatic lumbar disc herniation: a systematic review and meta-analysis. Eur Spine J 29, 1752–1770 (2020).

Download citation


  • Lumbar disc herniation
  • Discectomy
  • Minimally invasive surgery
  • Complication
  • Meta-analysis