Revision after spinal stenosis surgery

Abstract

Purpose

To make a literature review on spinal stenosis recurrence after a first surgery and edit rules to avoid this complication.

Methods

We conducted two separate PUBMED searches to evaluate the revision post-stenosis and degenerative scoliosis surgery using the terms: lumbar vertebrae/surgery, spinal stenosis, spine, scoliosis and reoperation. The resulting papers were categorized into three groups: (1) those that evaluated reoperation post-simple decompression; (2) those that evaluated spinal decompression and fusion for short (3 levels or less) or long (more than 3 levels) segment spinal fusion; and (3) those diagnosing the stenosis during the surgery.

Results

(1) We found 11 relevant papers that only looked at revision spine surgery post-laminectomy for spinal stenosis. (2) We found 20 papers looked at reoperation post-laminectomy and fusion amongst which there were two papers specifically comparing long-segment (> 3 level) and short-segment (3 or less levels) fusions. (3) In the unspecified group, we found only one article. Fifteen articles were excluded as they were not specifically looking at our objective criteria for revision surgery. In regard to revision post-adult deformity surgery, we found 18 relevant articles.

Conclusions

After this literature review and analysis of post-operative stenosis, it seems important to provide some advice to avoid revision surgeries more or less induced by the surgery. It looks interesting when performing simple decompression without fusion in the lumbar spine to analyse the risk of instability induced by the decompression and facet resection but also by a global balance analysis. Regarding pre-operative stenosis in a previously operated area, different causes may be evocated, like screw or cage malpositionning but also insufficient decompression which is a common cause. Intraoperatively, the use of neuromonitoring and intraoperative CT scan with navigation are useful tool in complex cases to avoid persisting stenosis. Pre-op analysis and planning are key parameters to decrease post-op problems.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Cheung PWH, Fong HK, Wong CS, Cheung JPY (2019) The influence of developmental spinal stenosis on the risk of re-operation on an adjacent segment after decompression-only surgery for lumbar spinal stenosis. Bone Jt J 101B:154–161. https://doi.org/10.1302/0301-620X.101B2.BJJ-2018-1136

    Article  Google Scholar 

  2. 2.

    Ramirez-Villaescusa J, López-Torres Hidalgo J, Martin-Benlloch A et al (2019) Risk factors related to adjacent segment degeneration: retrospective observational cohort study and survivorship analysis of adjacent unfused segments. Br J Neurosurg 33:17–24. https://doi.org/10.1080/02688697.2018.1523365

    Article  PubMed  Google Scholar 

  3. 3.

    Westermann L, Eysel P, Hantscher J et al (2017) The influence of Parkinson disease on lumbar decompression surgery: a retrospective case control study. World Neurosurg 108:513–518. https://doi.org/10.1016/j.wneu.2017.09.028

    Article  PubMed  Google Scholar 

  4. 4.

    Schöller K, Alimi M, Cong GT et al (2017) Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery 80:355–367. https://doi.org/10.1093/neuros/nyw091

    Article  PubMed  Google Scholar 

  5. 5.

    Schöller K, Steingrüber T, Stein M et al (2016) Microsurgical unilateral laminotomy for decompression of lumbar spinal stenosis: long-term results and predictive factors. Acta Neurochir (Wien) 158:1103–1113. https://doi.org/10.1007/s00701-016-2804-6

    Article  Google Scholar 

  6. 6.

    Ikegami D, Hosono N, Mukai Y et al (2017) Preoperative retrolisthesis as a predictive risk factor of reoperation due to delayed-onset symptomatic foraminal stenosis after central decompression for lumbar canal stenosis without fusion. Spine J 17:1066–1073. https://doi.org/10.1016/j.spinee.2017.03.006

    Article  PubMed  Google Scholar 

  7. 7.

    Drysch A, Ajiboye RM, Sharma A et al (2018) Effectiveness of reoperations for adjacent segment disease following lumbar spinal fusion. Orthopedics 41:e161–e167. https://doi.org/10.3928/01477447-20170621-02

    Article  PubMed  Google Scholar 

  8. 8.

    Maruenda JI, Barrios C, Garibo F, Maruenda B (2016) Adjacent segment degeneration and revision surgery after circumferential lumbar fusion: outcomes throughout 15 years of follow-up. Eur Spine J 25:1550–1557. https://doi.org/10.1007/s00586-016-4469-5

    Article  PubMed  Google Scholar 

  9. 9.

    Gerling MC, Leven D, Passias PG et al (2016) Risk factors for reoperation in patients treated surgically for lumbar stenosis a subanalysis of the 8-year data from the SPORT trial. Spine (Phila Pa 1976) 41:901–909. https://doi.org/10.1097/BRS.0000000000001361

    Article  Google Scholar 

  10. 10.

    Blumenthal C, Curran J, Benzel EC et al (2013) Radiographic predictors of delayed instability following decompression without fusion for degenerative Grade I lumbar spondylolisthesis: clinical article. J Neurosurg Spine 18:340–346. https://doi.org/10.3171/2013.1.SPINE12537

    Article  PubMed  Google Scholar 

  11. 11.

    Cheng T, Gerdhem P (2018) Outcome of surgery for degenerative lumbar scoliosis: an observational study using the Swedish Spine register. Eur Spine J 27:622–629. https://doi.org/10.1007/s00586-017-5248-7

    Article  PubMed  Google Scholar 

  12. 12.

    Crawford CH, Glassman SD, Carreon LY et al (2018) Prevalence and indications for unplanned reoperations following index surgery in the adult symptomatic lumbar scoliosis NIH-sponsored clinical trial. Spine Deform 6:741–744. https://doi.org/10.1016/j.jspd.2018.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Daniels AH, DePasse JM, Durand W et al (2018) Rod fracture after apparently solid radiographic fusion in adult spinal deformity patients. World Neurosurg 117:e530–e537. https://doi.org/10.1016/j.wneu.2018.06.071

    Article  PubMed  Google Scholar 

  14. 14.

    Sánchez-Mariscal F, Gomez-Rice A, Izquierdo E et al (2014) Survivorship analysis after primary fusion for adult scoliosis. Prognostic factors for reoperation. Spine J 14:1629–1634. https://doi.org/10.1016/j.spinee.2013.09.050

    Article  PubMed  Google Scholar 

  15. 15.

    Faundez AA, Richards J, Maxy P et al (2018) The mechanism in junctional failure of thoraco-lumbar fusions. Part II: analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown. Eur Spine J 27:139–148. https://doi.org/10.1007/s00586-017-5426-7

    Article  PubMed  Google Scholar 

  16. 16.

    Fradet L, Wang X, Crandall D, Aubin CE (2018) Biomechanical analysis of acute proximal junctional failure after surgical instrumentation of adult spinal deformity: the impact of proximal implant type, osteotomy procedures, and lumbar lordosis restoration*. Spine Deform 6:483–491. https://doi.org/10.1016/j.jspd.2018.02.007

    Article  PubMed  Google Scholar 

  17. 17.

    Kim HJ, Bridwell KH, Lenke LG et al (2014) Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine (Phila Pa 1976) 39:576–580. https://doi.org/10.1097/BRS.0000000000000246

    Article  Google Scholar 

  18. 18.

    Le Huec JC, Thompson W, Mohsinaly Y et al (2019) Sagittal balance of the spine. Eur Spine J 28:1889–1905. https://doi.org/10.1007/s00586-019-06083-1

    Article  PubMed  Google Scholar 

  19. 19.

    Voulgaris S, Karagiorgiadis D, Alexiou GA et al (2010) Continuous intraoperative electromyographic and transcranial motor evoked potential recordings in spinal stenosis surgery. J Clin Neurosci 17:274–276. https://doi.org/10.1016/j.jocn.2009.04.013

    Article  PubMed  Google Scholar 

  20. 20.

    Murase S, Oshima Y, Takeshita Y et al (2017) Anterior cage dislodgement in posterior lumbar interbody fusion: a review of 12 patients. J Neurosurg Spine 27:48–55. https://doi.org/10.3171/2016.12.SPINE16429

    Article  PubMed  Google Scholar 

  21. 21.

    Mac-Thiong J-M, Parent S, Poitras B et al (2013) Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine (Phila Pa 1976) 38:229–237. https://doi.org/10.1097/BRS.0b013e31826980a9

    Article  Google Scholar 

  22. 22.

    Goel A, Ranjan S, Shah A et al (2019) Lumbar canal stenosis: analyzing the role of stabilization and the futility of decompression as treatment. Neurosurg Focus 46:E7. https://doi.org/10.3171/2019.2.FOCUS18726

    Article  PubMed  Google Scholar 

  23. 23.

    Schröder ML, Staartjes VE (2017) Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis. Neurosurg Focus 42:E12. https://doi.org/10.3171/2017.3.FOCUS16534

    Article  PubMed  Google Scholar 

  24. 24.

    Wang TY, Nayar G, Brown CR et al (2017) Bony lateral recess stenosis and other radiographic predictors of failed indirect decompression via extreme lateral interbody fusion: multi-institutional analysis of 101 consecutive spinal levels. World Neurosurg 106:819–826. https://doi.org/10.1016/j.wneu.2017.07.045

    Article  PubMed  Google Scholar 

  25. 25.

    Ughwanogho E, Patel NM, Baldwin KD et al (2012) Computed tomography-guided navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more accurate placement and less screw removal. Spine (Phila Pa 1976) 37:E473–E478. https://doi.org/10.1097/BRS.0b013e318238bbd9

    Article  Google Scholar 

  26. 26.

    Arima H, Glassman SD, Dimar JR et al (2018) Neurologic comorbidities predict proximal junctional failure in adult spinal deformity. Spine Deform 6:576–586. https://doi.org/10.1016/j.jspd.2018.01.008

    Article  PubMed  Google Scholar 

  27. 27.

    Ahmad S, Hamad A, Bhalla A et al (2016) The outcome of decompression alone for lumbar spinal stenosis with degenerative spondylolisthesis. Eur Spine J 26:414–419. https://doi.org/10.1007/s00586-016-4637-7

    Article  PubMed  Google Scholar 

  28. 28.

    Delitto A, Piva SR, Moore CG et al (2015) Surgery versus nonsurgical treatment of lumbar spinal stenosis. A randomized trial. Ann Intern Med 162:465–473. https://doi.org/10.7326/M14-1420

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yavin D, Clark C, Isaacs A et al (2017) Lumbar fusion for degenerative disease: a systematic review and meta-analysis. Neurosurgery. https://doi.org/10.1093/neuros/nyw162

    Article  PubMed  Google Scholar 

  30. 30.

    Baranowska A, Baranowka J, Baranowski P (2016) Analysis of reasons for failure of surgery for degenerative disease of lumbar spine. Ortop Traumatol Rehabil 18:117–129. https://doi.org/10.5604/15093492.1205004

    Article  PubMed  Google Scholar 

  31. 31.

    Alimi M, Hofstetter CP, Pyo SY, Paulo D (2015) Minimally invasive laminectomy for lumbar spinal stenosis in patients with and without preoperative spondylolisthesis: clinical outcome and reoperation rates. J Neurosurg Spine 22:339–352. https://doi.org/10.3171/2014.8.SPINE14687.Submitted

    Article  PubMed  Google Scholar 

  32. 32.

    Aizawa T, Ozawa H, Kusakabe T, Tanaka Y (2015) Reoperation rates after fenestration for lumbar spinal canal stenosis: a 20-year period survival function method analysis. Eur Spine J 24:381–387. https://doi.org/10.1007/s00586-014-3479-4

    Article  PubMed  Google Scholar 

  33. 33.

    Ang C, Tow BP, Fook S et al (2015) Minimally invasive compared with open lumbar laminotomy: no functional benefits at 6 or 24 months after surgery. Spine J 15:1705–1712. https://doi.org/10.1016/j.spinee.2013.07.461

    Article  PubMed  Google Scholar 

  34. 34.

    Wang J, Zhou Y, Feng Z et al (2011) Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J 20:623–628. https://doi.org/10.1007/s00586-010-1578-4

    Article  PubMed  Google Scholar 

  35. 35.

    Leonardi MA, Zanetti M, Saupe N, Min K (2010) Early postoperative MRI in detecting hematoma and dural compression after lumbar spinal decompression: prospective study of asymptomatic patients in comparison to patients requiring surgical revision. Eur Spine J 19:2216–2222. https://doi.org/10.1007/s00586-010-1483-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Mendenhall SK, Parker SL, Adogwa O et al (2014) Long-term outcomes after revision neural decompression and fusion for same-level recurrent lumbar stenosis defining the effectiveness of surgery. J Spinal Disord Tech 27:353–357

    Article  Google Scholar 

  37. 37.

    Atlas SJ, Keller RB, Wu YA et al (2005) Long-term outcomes of surgical and nonsurgical management of lumbar spinal stenosis : 8 to 10 year results from the Maine Lumbar Spine Study. Spine (Phila Pa 1976) 30:936–943

    Article  Google Scholar 

  38. 38.

    Yamada K, Satoh S, Abe Y et al (2018) Diffuse idiopathic skeletal hyperostosis extended to the lumbar segment is a risk factor of reoperation in patients treated surgically for lumbar stenosis. Spine (Phila Pa 1976) 43:1446–1453. https://doi.org/10.1097/BRS.0000000000002618

    Article  Google Scholar 

  39. 39.

    Pourtaheri S, Billings C, Bogatch M et al (2015) Outcomes of instrumented and noninstrumented posterolateral lumbar fusion. Orthopedics 38:1104–1109. https://doi.org/10.3928/01477447-20151120-07

    Article  Google Scholar 

  40. 40.

    Pereira BJA, Vanderlei C, De HM et al (2016) Spinal surgery for degenerative lumbar spine disease: predictors of outcome. Clin Neurol Neurosurg 140:1–5. https://doi.org/10.1016/j.clineuro.2015.11.004

    Article  PubMed  Google Scholar 

  41. 41.

    Schroeder JE, Hughes A, Sama A et al (2015) Lumbar spine surgery in patients with Parkinson disease. J Bone Joint Surg Br 97:1661–1666

    Article  Google Scholar 

  42. 42.

    Nerland US, Jakola AS, Giannadakis C et al (2015) The risk of getting worse: predictors of deterioration after decompressive surgery for lumbar spinal stenosis: a multicenter observational study. World Neurosurg 84:1095–1102. https://doi.org/10.1016/j.wneu.2015.05.055

    Article  PubMed  Google Scholar 

  43. 43.

    Burgstaller JM, Porchet F, Steurer J, Wertli MM (2015) Arguments for the choice of surgical treatments in patients with lumbar spinal stenosis—a systematic appraisal of randomized controlled trials. BMC Musculoskelet Disord 16:1–9. https://doi.org/10.1186/s12891-015-0548-8

    Article  Google Scholar 

  44. 44.

    Santiago-dieppa D, Bydon M, Xu R et al (2014) Long-term outcomes after non-instrumented lumbar arthrodesis. J Clin Neurosci 21:1393–1397. https://doi.org/10.1016/j.jocn.2014.02.010

    Article  PubMed  Google Scholar 

  45. 45.

    Modhia U, Takemoto S, Braid-Forbes M et al (2013) Readmission rates after decompression surgery in patients with lumbar spinal stenosis among medicare beneficiaries. Spine (Phila Pa 1976) 38:591–596. https://doi.org/10.1097/BRS.0b013e31828628f5

    Article  Google Scholar 

  46. 46.

    Adogwa O, Owens R, Karikari I et al (2013) Revision lumbar surgery in elderly patients with symptomatic pseudarthrosis, adjacent-segment disease, or same-level recurrent stenosis. Part 2. A cost-effectiveness analysis: clinical article. J Neurosurg Spine 18:147–153

    Article  Google Scholar 

  47. 47.

    Adogwa O, Carr R, Kudyba K et al (2013) Revision lumbar surgery in elderly patients with symptomatic pseudarthrosis, adjacent-segment disease, or same-level recurrent stenosis. Part 1. Two-year outcomes and clinical efficacy: clinical article. J Neurosurg Spine 18:139–146

    Article  Google Scholar 

  48. 48.

    Radcliff K, Curry P, Hilibrand A et al (2013) Risk for adjacent segment and same segment reoperation after surgery for lumbar stenosis. Spine (Phila Pa 1976) 38:531–539. https://doi.org/10.1097/BRS.0b013e31827c99f0

    Article  Google Scholar 

  49. 49.

    Inoue G, Ohtori S, Ozawa T et al (2012) Postoperative lumbar spinal stenosis after intertransverse fusion with granules of hydroxyapatite: a case report. Diagn Pathol 7:153

    Article  Google Scholar 

  50. 50.

    Rihn J, Radcliff K, Hilibrand A et al (2012) Does obesity affect outcomes of treatment for lumbar stenosis and degenerative spondylolisthesis? Analysis of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 37:1933–1946

    Article  Google Scholar 

  51. 51.

    Jansson K, Nemeth G, Granath F, Blomqvist P (2005) Spinal stenosis re-operation rate in Sweden is 11% at 10 years—a national analysis of 9664 operations. Eur Spine J 14:659–663. https://doi.org/10.1007/s00586-004-0851-9

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hansraj K, O’Leary P, Cammisa F et al (2001) Decompression, fusion, and instrumentation surgery for complex lumbar spinal stenosis. Clin Orthop Relat Res 384:18–25

    Article  Google Scholar 

  53. 53.

    Cornefjord M, Byröd G, Brisby H, Rydevik B (2000) A long-term (4- to 12-year) follow-up study of surgical treatment of lumbar spinal stenosis. Eur Spine J 9:563–570

    CAS  Article  Google Scholar 

  54. 54.

    Deyo RA, Martin BI, Kreuter W et al (2011) Revision surgery following operations for lumbar stenosis. J Bone Jt Surgery 93:1979–1986

    Article  Google Scholar 

  55. 55.

    Brodke DS, Annis P, Lawrence BD et al (2013) Reoperation and revision rates of 3 surgical treatment methods for lumbar stenosis associated with degenerative scoliosis and spondylolisthesis. Spine (Phila Pa 1976) 38:2287–2294. https://doi.org/10.1097/BRS.0000000000000068

    Article  Google Scholar 

  56. 56.

    Hosogane N, Watanabe K, Kono H et al (2013) Curve progression after decompression surgery in patients with mild degenerative scoliosis. J Neurosurg Spine 18:321–326

    Article  Google Scholar 

  57. 57.

    Kelleher MO, Sn F, Timlin M et al (2010) Success and failure of minimally invasive decompression for focal lumbar spinal stenosis in patients with and without deformity. Spine (Phila Pa 1976) 35:981–987

    Article  Google Scholar 

  58. 58.

    Glassman S, Pugh K, Johnson J, Dimar J (2002) Surgical management of adjacent level degeneration following lumbar spine fusion. Orthopedics 25:1051–1055

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. C. Le Huec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PPTX 137 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Huec, J.C., Seresti, S., Bourret, S. et al. Revision after spinal stenosis surgery. Eur Spine J 29, 22–38 (2020). https://doi.org/10.1007/s00586-020-06314-w

Download citation

Keywords

  • Spinal stenosis
  • Revision surgery
  • Proximal junctional kyphosis
  • Sagittal balance
  • Lumbar lordosis