Skip to main content

3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices

A Correction to this article was published on 26 May 2020

This article has been updated

Abstract

Purpose

Three-dimensional printing (3DP), or additive manufacturing, is an emergent fabrication technology for surgical devices. As a production method, 3DP enables physical realisation of surgical implants from geometrically complex digital-models in computer-aided design. Spine surgery has been an innovative adopter of 3DP technology for both patient-specific (PS) and market-available ‘Off-The-Shelf’ (OTS) implants. The present study assessed clinical evidence for efficacy and safety of both PS and OTS 3DP spinal implants through review of the published literature. The aim was to evaluate the clinical utility of 3DP devices for spinal surgery.

Methods

A systematic literature review of peer-reviewed papers featured on online medical databases evidencing the application of 3DP (PS and OTS) surgical spine implants was conducted in accordance with PRISMA guidelines.

Results

Twenty-two peer-reviewed articles and one book-chapter were eligible for systematic review. The published literature was limited to case reports and case series, with a predominant focus on PS designs fabricated from titanium alloys for surgical reconstruction in cases where neoplasia, infection, trauma or degenerative processes of the spine have precipitated significant anatomical complexity.

Conclusion

PS and 3DP OTS surgical implants have demonstrated considerable utility for the surgical management of complex spine pathology. The reviewed literature indicated that 3DP spinal implants have also been used safely, with positive surgeon- and patient-reported outcomes. However, these conclusions are tentative as the follow-up periods are still relatively short and the number of high-powered studies was limited. Single case and small case series reporting would benefit greatly from more standardised reporting of clinical, radiographic and biomechanical outcomes.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, access via your institution.

Change history

  • 26 May 2020

    Unfortunately, 3rd author’s first name was incorrectly published in the original publication. The complete correct name is given below,

References

  1. Ventola CL (2014) Medical applications for 3D printing: current and projected uses. Pharm Ther 39:704

    Google Scholar 

  2. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. In: ACS Publications

  3. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. In: UVP Inc, San Gabriel, California, USA

  4. Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, El Batti S (2016) Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 159:1485–1500. https://doi.org/10.1016/j.surg.2015.12.017

    Article  Google Scholar 

  5. Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15:115. https://doi.org/10.1186/s12938-016-0236-4

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, Baskaradas A (2015) Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res 199:512–522. https://doi.org/10.1016/j.jss.2015.06.051

    Article  PubMed  Google Scholar 

  7. Wilcox B, Mobbs RJ, Wu AM, Phan K (2017) Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg 3:433–443. https://doi.org/10.21037/jss.2017.09.01

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carette S, Fehlings MG (2005) Cervical radiculopathy. N Engl J Med 353:392–399. https://doi.org/10.1056/NEJMcp043887

    CAS  Article  PubMed  Google Scholar 

  9. Tetreault L, Goldstein CL, Arnold P, Harrop J, Hilibrand A, Nouri A, Fehlings MG (2015) Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery 77:S51–S67

    Article  Google Scholar 

  10. Karadimas KS, Erwin MW, Ely GC, Dettori RJ, Fehlings GM (2013) Pathophysiology and natural history of cervical spondylotic myelopathy. Spine 38:S21–S36. https://doi.org/10.1097/BRS.0b013e3182a7f2c3

    Article  PubMed  Google Scholar 

  11. Baptiste DC, Fehlings MG (2006) Pathophysiology of cervical myelopathy. Spine J 6:190S. https://doi.org/10.1016/j.spinee.2006.04.024

    Article  PubMed  Google Scholar 

  12. Roh JS, Teng AL, Yoo JU, Davis J, Furey C, Bohlman HH (2005) Degenerative disorders of the lumbar and cervical spine. Orthop Clin 36:255–262

    Article  Google Scholar 

  13. Mobbs RJ, Loganathan A, Yeung V, Rao PJ (2013) Indications for anterior lumbar interbody fusion. Orthop Surg 5:153–163

    Article  Google Scholar 

  14. Tracy JA, Bartleson JD (2010) Cervical spondylotic myelopathy: the neurologist 16:176–187

    PubMed  Google Scholar 

  15. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg 1:2

    PubMed  PubMed Central  Google Scholar 

  16. Holly LT, Schwender JD, Rouben DP, Foley KT (2006) Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 20:1–5

    Article  Google Scholar 

  17. Choy WJ, Parr WCH, Phan K, Walsh WR, Mobbs RJ (2018) 3-dimensional printing for anterior cervical surgery: a review. J Spine Surg 4:757–769. https://doi.org/10.21037/jss.2018.12.01

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang T, Wang H, Liu S, An H-D, Liu H, Ding W-Y (2016) Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion in multilevel cervical spondylotic myelopathy: a meta-analysis. Medicine 95:e5437. https://doi.org/10.1097/MD.0000000000005437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Wen Z-q, Du J-y, Ling Z-h, Xu H-d, Lin X-j (2015) Anterior cervical discectomy and fusion versus anterior cervical corpectomy and fusion in the treatment of multilevel cervical spondylotic myelopathy: systematic review and a meta-analysis. Ther Clin Risk Manag 11:161

    PubMed  PubMed Central  Google Scholar 

  20. Chong E, Pelletier MH, Mobbs RJ, Walsh WR (2015) The design evolution of interbody cages in anterior cervical discectomy and fusion: a systematic review. BMC Musculoskelet Disord 16:99. https://doi.org/10.1186/s12891-015-0546-x

    Article  PubMed  PubMed Central  Google Scholar 

  21. Phan K, Mobbs RJ (2016) Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthop Surg 8:270–277

    Article  Google Scholar 

  22. Phan K, Tian DH, Cao C, Black D, Yan TD (2015) Systematic review and meta-analysis: techniques and a guide for the academic surgeon. Ann Cardiothorac Surg 4:112–122. https://doi.org/10.3978/j.issn.2225-319X.2015.02.04

    Article  PubMed  PubMed Central  Google Scholar 

  23. Phan K, Mobbs RJ (2015) Systematic reviews and meta-analyses in spine surgery, neurosurgery and orthopedics: guidelines for the surgeon scientist. J Spine Surg 1:19–27. https://doi.org/10.3978/j.issn.2414-469X.2015.06.01

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLOS Med 6:e1000100. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu NMD, Wei FMD, Liu XMD, Jiang LMD, Cai HMD, Li ZMD, Yu MMD, Wu FMD, Liu ZMD (2016) Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing Sarcoma. Spine 41:E50–E54

    Article  Google Scholar 

  26. Tang HP, Zhao P, Xiang CS, Liu N, Jia L (2018) Ti-6Al-4 V orthopedic implants made by selective electron beam melting. In: Froes FH, Qian M (eds) Titanium in medical and dental applications. Woodhead Publishing, Cambridge, pp 239–249

    Chapter  Google Scholar 

  27. Amelot A, Colman M, Loret JE (2018) Vertebral body replacement using patient-specific three-dimensional-printed polymer implants in cervical spondylotic myelopathy: an encouraging preliminary report. Spine J 18:892–899

    Article  Google Scholar 

  28. Mokawem M, Katzouraki G, Harman CL, Lee R (2019) Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2019.07.011

    Article  PubMed  Google Scholar 

  29. Chung SS, Lee KJ, Kwon YB, Kang KC (2017) Characteristics and efficacy of a new 3-dimensional printed mesh structure titanium alloy spacer for posterior lumbar interbody fusion. Orthopedics 40:e880–e885

    Article  Google Scholar 

  30. Thayaparan GK, Owbridge MG, Thompson RG, D’Urso PS (2019) Designing patient-specific solutions using biomodelling and 3D-printing for revision lumbar spine surgery. Eur Spine J 28(2):18–24

    Article  Google Scholar 

  31. Wei R, Guo W, Yang R, Tang X, Yang Y, Ji T, Liang H (2019) Reconstruction of the pelvic ring after total en bloc sacrectomy using a 3D-printed sacral endoprosthesis with re-establishment of spinopelvic stability: a retrospective comparative study. Bone Joint J 101-B:880–888

    CAS  Article  Google Scholar 

  32. Kim D, Lim J-Y, Shim K-W, Han JW, Yi S, Yoon DH, Kim KN, Ha Y, Ji GY, Shin DA (2017) Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J 58:453–457

    Article  Google Scholar 

  33. Wei R, Guo W, Ji T, Zhang Y, Liang H (2017) One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J 26:1902–1909. https://doi.org/10.1007/s00586-016-4871-z

    Article  PubMed  Google Scholar 

  34. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K (2017) The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg: Spine 26:513–518

    Google Scholar 

  35. Girolami M, Boriani S, Bandiera S, Barbanti-Brodano G, Ghermandi R, Terzi S, Tedesco G, Evangelisti G, Pipola V, Gasbarrini A (2018) Biomimetic 3D-printed custom-made prosthesis for anterior column reconstruction in the thoracolumbar spine: a tailored option following en bloc resection for spinal tumors: preliminary results on a case-series of 13 patients. Eur Spine J 27:3073–3083

    Article  Google Scholar 

  36. Mobbs RJ, Choy WJ, Wilson P, McEvoy A, Phan K, Parr WCH (2018) L5 en-bloc vertebrectomy with customized reconstructive implant: comparison of patient-specific versus off-the-shelf implant. World Neurosurg 112:94–100

    Article  Google Scholar 

  37. Siu TL, Rogers JM, Lin K, Thompson R, Owbridge M (2018) Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg 111:1–5

    Article  Google Scholar 

  38. Mobbs RJ, Parr WCH, Choy WJ, McEvoy A, Walsh WR, Phan K (2019) Anterior lumbar interbody fusion using a personalized approach: is custom the future of implants for anterior lumbar interbody fusion surgery? World Neurosurg. https://doi.org/10.1016/j.wneu.2018.12.144

    Article  PubMed  Google Scholar 

  39. Chung KS, Shin DA, Kim KN, Ha Y, Yoon DH, Yi S (2019) Vertebral reconstruction with customized 3-dimensional-printed spine implant replacing large vertebral defect with 3-year follow-up. World Neurosurg 126:90–95

    Article  Google Scholar 

  40. Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE (2017) Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg 105:1032.e1013–1032.e1017. https://doi.org/10.1016/j.wneu.2017.05.133

    Article  Google Scholar 

  41. Phan K, Sgro A, Maharaj MM, D’Urso P, Mobbs RJ (2016) Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. J Spine Surg 2:314–318. https://doi.org/10.21037/jss.2016.12.06

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spetzger U, Frasca M, König SA (2016) Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J 25:2239–2246. https://doi.org/10.1007/s00586-016-4473-9

    Article  PubMed  Google Scholar 

  43. Li X, Wang Y, Zhao Y, Liu J, Xiao S, Mao K (2017) Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma. Spine 42:E1326–E1330. https://doi.org/10.1097/BRS.0000000000002229

    Article  PubMed  Google Scholar 

  44. Lu T, Liu C, Yang B, Liu J, Zhang F, Wang D, Li H, He X (2017) Single-level anterior cervical corpectomy and fusion using a new 3D-printed anatomy-adaptive titanium mesh cage for treatment of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: a retrospective case series study. Med Sci Monit: Intern Med J Exp Clin Res 23:3105–3114

    Article  Google Scholar 

  45. Thayaparan GK, Owbridge MG, Thompson RG, D’Urso PS (2018) Designing patient-specific 3D printed devices for posterior atlantoaxial transarticular fixation surgery. J Clin Neurosci 56:192–198. https://doi.org/10.1016/j.jocn.2018.06.038

    Article  PubMed  Google Scholar 

  46. He S, Yang X, Yang J, Ye C, Liu W, Wei H, Xiao J (2019) Customized “Whole-Cervical-Vertebral-Body” reconstruction after modified subtotal spondylectomy of C2–C7 spinal tumor via piezoelectric surgery. Oper Neurosurg. https://doi.org/10.1093/ons/opz077

    Article  Google Scholar 

  47. Zhang Y-W, Deng L, Zhang X-X, Yu X-L, Ai Z-Z, Mei Y-X, He F, Yu H, Zhang L, Xiao X, Xiao Y, Chen X, Zhang S-L, Ge H-Y, Dong X-P (2019) Three-dimensional printing-assisted cervical anterior bilateral pedicle screw fixation of artificial vertebral body for cervical tuberculosis. World Neurosurg 127:25–30. https://doi.org/10.1016/j.wneu.2019.03.238

    Article  PubMed  Google Scholar 

  48. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ (2014) Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg 6:81–89

    Article  Google Scholar 

  49. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY (2017) Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility. Mater Sci Eng, C 76:1328–1343. https://doi.org/10.1016/j.msec.2017.02.094

    CAS  Article  Google Scholar 

  50. Sidambe A (2014) Biocompatibility of advanced manufactured titanium implants: a review. Materials 7:8168–8188

    Article  Google Scholar 

  51. Palmquist A, Snis A, Emanuelsson L, Browne M, Thomsen P (2013) Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: experimental studies in sheep. J Biomater Appl 27:1003–1016. https://doi.org/10.1177/0731684411431857

    CAS  Article  PubMed  Google Scholar 

  52. Lin X, Xiao X, Wang Y, Gu C, Wang C, Chen J, Liu H, Luo J, Li T, Wang D, Fan S (2018) Biocompatibility of bespoke 3D-printed titanium alloy plates for treating acetabular fractures. Biomed Res Int 2018:2053486. https://doi.org/10.1155/2018/2053486

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Wang H, Zhao B, Liu C, Wang C, Tan X, Hu M (2016) A comparison of biocompatibility of a Titanium alloy fabricated by electron beam melting and selective laser melting. PLoS ONE 11:e0158513. https://doi.org/10.1371/journal.pone.0158513

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Nawaz F, Wall BM (2007) Drug rash with eosinophilia and systemic symptoms (DRESS) syndrome: suspected association with titanium bioprosthesis. Am J Med Sci 334:215–218. https://doi.org/10.1097/MAJ.0b013e318141f723

    Article  PubMed  Google Scholar 

  55. FDA (2017) Technical considerations for additive manufactured medical devices. In: U.S. Food & Drug Administration (ed). U.S. Department of Health and Human Services

  56. Shah RR, Mohammed S, Saifuddin A, Taylor BA (2003) Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation. Eur Spine J 12:378–385. https://doi.org/10.1007/s00586-002-0517-4

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cook SD (2004) Comparison of methods for determining the presence and extent of anterior lumbar interbody fusion. Spine 29:1118

    Article  Google Scholar 

  58. Williams AL, Gornet MF, Burkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. Am J Neuroradiol: AJNR 26:2057–2066

    PubMed  Google Scholar 

  59. World Health Organization: International Clinical Trials Registry Platform (2018) Lumbar fusion with next spine 3D-printed titanium interbody cages. http://apps.who.int/trialsearch/Trial2.aspx?TrialID=NCT03647501

  60. Suh PB, Puttlitz C, Lewis C, Bal BS, McGilvray K (2017) The effect of cervical interbody cage morphology, material composition, and substrate density on cage subsidence. J Am Acad Orthop Surg 25:160–168

    Article  Google Scholar 

  61. Chatham LS, Patel VV, Yakacki CM, Dana Carpenter R (2017) Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. J Biomech Eng 139:0510051–0510058. https://doi.org/10.1115/1.4036312

    Article  PubMed Central  Google Scholar 

  62. de Beer N, Scheffer C (2012) Reducing subsidence risk by using rapid manufactured patient-specific intervertebral disc implants. Spine J 12:1060–1066

    Article  Google Scholar 

  63. Fengbin Y, Jinhao M, Xinyuan L, Xinwei W, Yu C, Deyu C (2013) Evaluation of a new type of titanium mesh cage versus the traditional titanium mesh cage for single-level, anterior cervical corpectomy and fusion. Eur Spine J 22:2891–2896. https://doi.org/10.1007/s00586-013-2976-1

    Article  PubMed  PubMed Central  Google Scholar 

  64. Arts MP, Peul WC (2008) Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery 63:537–545. https://doi.org/10.1227/01.NEU.0000325260.00628.DC

    Article  PubMed  Google Scholar 

  65. Lau D, Song Y, Guan Z, La Marca F, Park P (2013) Radiological outcomes of static vs expandable titanium cages after corpectomy. Neurosurgery 72:529–539. https://doi.org/10.1227/NEU.0b013e318282a558

    Article  PubMed  Google Scholar 

  66. Chen Y, Chen D, Guo Y, Wang X, Lu X, He Z, Yuan W (2008) Subsidence of titanium mesh cage. J Spinal Disord Tech 21:489–492. https://doi.org/10.1097/BSD.0b013e318158de22

    Article  PubMed  Google Scholar 

  67. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomater 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    CAS  Article  Google Scholar 

  68. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomater 26:5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    CAS  Article  Google Scholar 

  69. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34:369–385. https://doi.org/10.1002/jor.23075

    CAS  Article  PubMed  Google Scholar 

  70. Walsh WR, Pelletier MH, Wang T, Lovric V, Morberg P, Mobbs RJ (2019) Does implantation site influence bone ingrowth into 3D printed porous implants? Spine J. https://doi.org/10.1016/j.spinee.2019.06.020

    Article  PubMed  Google Scholar 

  71. Burkus JK, Foley K, Haid R, LeHuec J-C (2001) Surgical interbody research group–radiographic assessment of interbody fusion devices: fusion criteria for anterior lumbar interbody surgery. Neurosurg Focus 10:1–9. https://doi.org/10.3171/foc.2001.10.4.12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

(I) Study conception and design were contributed by JL Burnard, WCH Parr, RJ Mobbs; (II) Administrative Support was contributed by RJ Mobbs, WCH Parr, WJ Choy; (III) Provision of Study Materials was contributed by WCH Parr, RJ Mobbs; (IV) Data Analysis/Interpretation were contributed by JL Burnard, WCH Parr, RJ Mobbs; (V) Manuscript Writing was contributed by JL Burnard, WCH Parr; (VI) Critical Revision of Manuscript was contributed by WCH Parr, RJ Mobbs, WR Walsh.

Corresponding author

Correspondence to Joshua L. Burnard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 779 kb)

Supplementary material 2 (DOCX 81 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burnard, J.L., Parr, W.C.H., Choy, W.J. et al. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J 29, 1248–1260 (2020). https://doi.org/10.1007/s00586-019-06236-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06236-2

Keywords

  • 3D-printing
  • Additive manufacturing
  • Spine surgery
  • Patient specific
  • Custom made
  • Implant