Skip to main content
Log in

Custom-made trabecular titanium implants for the treatment of lumbar degenerative discopathy via ALIF/XLIF techniques: rationale for use and preliminary results

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Related to the development and diffusion of ALIF and XLIF, it is possible to correct sagittal malalignment in selected cases of lumbar degenerative discopathy with a relatively low invasiveness. Still, the malposition or the inappropriate size of the implanted cages may lead to the subsidence of the vertebral endplates with loss of correction as well as a decrease in the potential to restore spinal biomechanics in the long run. The aim of this study is to evaluate safety, feasibility, and preliminary clinical and radiological results when using custom-made, trabecular titanium cages in ALIF and XLIF procedures.

Methods

We prospectively evaluated 18 consecutive patients who underwent either an ALIF or an XLIF procedure with the implant of a custom-made, trabecular titanium cage for lumbar degenerative disease with sagittal imbalance, with a minimum of 1-year clinical and radiological follow-up.

Results

After a mean follow-up of 14 months, the Oswestry score dropped to a mean of 13 from a preoperative value of 48 (p < 0.0001). Lumbar lordosis was significantly improved, especially in the lower lumbar segment L4-S1 (+ 11 ± 7°; p < 0.0001). No cases of subsidence were noted.

Conclusions

Custom-made, trabecular titanium cages allowed a segmental, steady, durable sagittal correction via ALIF and XLIF approaches. The absence of cage subsidence at 1 year encourages further studies on a larger cohort with longer follow-up.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462

    Article  Google Scholar 

  2. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  3. Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine 22:691–700

    Article  CAS  Google Scholar 

  4. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435–443

    Article  Google Scholar 

  5. Elowitz E, Yanni D, Chwajol M et al (2011) Evaluation of indirect decompression of the lumbar spinal canal following minimally invasive lateral transpsoas interbody fusion: radiographic and outcome analysis. Minim Invasive Neurosurg 54:201–206

    Article  CAS  Google Scholar 

  6. Oliveira L, Marchi L, Coutinho E, Pimenta L (2010) A radio- graphic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35(26 Suppl):S331–S337

    Article  Google Scholar 

  7. Tohmeh AG, Khorsand D, Watson B et al (2014) Radiographical and clinical evaluation of extreme lateral interbody fusion: effects of cage size and instrumentation type with a minimum of 1-year follow-up. Spine 39:E1582–E1591

    Article  Google Scholar 

  8. Marchi L, Abdala N, Oliveira L et al (2013) Radiographic and clinical evaluation of cage subsidence after stand- alone lateral interbody fusion. J Neurosurg Spine 19:110–118

    Article  Google Scholar 

  9. Schiffman M, Brau SA, Henderson R et al (2003) Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis. Spine J 3:377–387

    Article  Google Scholar 

  10. Chen D, Fay LA, Lok J et al (1995) Increasing neuroforaminal volume by anterior interbody distraction in degenerative lumbar spine. Spine (Phila Pa 1976) 20:74–79

    Article  CAS  Google Scholar 

  11. Weiner BK, Fraser RD (1998) Spine update lumbar interbody cages. Spine (Phila Pa 1976) 23:634–640

    Article  CAS  Google Scholar 

  12. Beutler WJ, Peppelman WC Jr (2003) Anterior lumbar fusion with paired BAK standard and paired BAK Proximity cages: subsidence incidence, subsidence factors, and clinical outcome. Spine J 3:289–293

    Article  Google Scholar 

  13. Mehren C, Mayer HM, Siepe C, Grochulla F, Korge A (2010) The minimally invasive anterolateral approach to L2-5. Oper Orthop Traumatol 22:221–228

    Article  Google Scholar 

  14. Ambati DV, Wright EK Jr, Lehman RA Jr, Kang DG, Wagner SC, Dmitriev AE (2014) Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J 2014(06):015

    Google Scholar 

  15. Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg (Br) 80:351–359

    Article  CAS  Google Scholar 

  16. Hueng DY, Chung TT, Chuang WH, Hsu CP, Chou KN, Lin SC (2014) Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment. Spine (Phila Pa 1976) 39(13):E770–E776

    Article  Google Scholar 

  17. Satake K, Kanemura T, Yamaguchi H, Segi N, Ouchida J (2016) Predisposing factors for intraoperative endplate injury of extreme lateral interbody fusion. Asian Spine J 10(5):907–914

    Article  Google Scholar 

  18. Zhang Z, Li H, Fogel GR, Liao Z, Li Y, Liu W (2018) Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. World Neurosurg 111:e581–e591

    Article  Google Scholar 

  19. Choudhri TF, Mummaneni PV, Dhall SS, Eck JC, Groff MW, Ghogawala Z, Watters WC 3rd, Dailey AT, Resnick DK, Sharan A, Wang JC, Kaiser MG (2014) Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 4: radiographic assessment of fusion status. J Neurosurg Spine 21(1):23–30

    Article  Google Scholar 

  20. Huang CY, Yeh KT, Yu TC, Lee RP, Chen IH, Peng CH, Liu KL, Wang JH, Wu WT (2018) Surgical results of a one- stage combined anterior lumbosacral fusion and posterior percutaneous pedicle screw fixation. Ci Ji Yi Xue Za Zhi 30(1):20–23

    PubMed  PubMed Central  Google Scholar 

  21. Harrysson O, Deaton B, Bardin J, West H, Cansizoglu O, Cormier D, Little DM (2005) Evaluation of titanium implant components directly fabricated through electron beam melting technology. Adv Mater Processes 163(7):72–77

    Google Scholar 

  22. Dennis S, Watkins R, Landaker S et al (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 14:876–878

    Article  CAS  Google Scholar 

  23. Cheung KM, Zhang YG, Lu DS et al (2003) Reduction of disc space distraction after anterior lumbar interbody fusion with autologous iliac crest graft. Spine (Phila Pa 1976) 28:1385–1389

    Google Scholar 

  24. Choi JY, Sung KH (2006) Subsidence after anterior lumbar interbody fusion using paired stand-alone rectangular cages. Eur Spine J 15:16–22

    Article  Google Scholar 

  25. Le TV, Baaj AA, Dakwar E, Burkett CJ, Murray G, Smith DA et al (2012) Subsidence of polyetheretherketone intervertebral cages in minimally invasive lateral retroperitoneal transpsoas lumbar interbody fusion. Spine (Phila Pa 1976) 37:1268–1273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Bongetta.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article and no funding to be reported for its writing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartara, F., Bongetta, D., Pilloni, G. et al. Custom-made trabecular titanium implants for the treatment of lumbar degenerative discopathy via ALIF/XLIF techniques: rationale for use and preliminary results. Eur Spine J 29, 314–320 (2020). https://doi.org/10.1007/s00586-019-06191-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-019-06191-y

Keywords

Navigation