Restoring the ideal Roussouly sagittal profile in adult scoliosis surgery decreases the risk of mechanical complications

Abstract

Purpose

There are still no data proving whether restoring the ideal sagittal profile (according to Roussouly classification) in adult scoliosis (AS) patients leads to any additional benefit, especially regarding mechanical complications.

Methods

Retrospective analysis of operated AS patients recorded in a prospective multicenter database. Demographic and radiographic (preoperative and 6-week postoperative) data were analyzed. Patients with and without mechanical complications were compared looking especially at the surgical restoration of the ideal (based on Pelvic Incidence) sagittal profile. Univariate and multivariate analysis was performed to identify causes of mechanical complications at 2-year minimum follow-up.

Results

Ninty-six AS patients were analyzed. Thirty-nine patients suffered a mechanical complication (18 PJK, 11 pseudoarthrosis, 10 screw pull-out), and 57 patients had no mechanical complications. Postoperatively, 72% of patients not matching the ideal Roussouly-type suffered mechanical complications compared to 15% of matched patients (P < 0.001). Univariate analysis showed that older patients 64.9 ± 13 versus 40.7 ± 15.6 years (P < 0.001), higher postoperative Global Tilt (27° vs. 14.7°) and Pelvic Tilt (25° vs. 16°) (P < 0.001), upper instrumented vertebra at the thoracolumbar junction (62% vs. 21%) (P < 0.001), fixation to the Iliac (76% vs. 6%) (P < 0.001), and postoperative Roussouly-type mismatch (72% vs. 15%) (P < 0.001) significantly increased the rate of mechanical complications. Multivariate logistic regression analysis selected: postoperative Roussouly-type mismatch (OR = 41.9; 95%CI = 5.5–315.7; P < 0.001), iliac instrumentation (OR = 19.4; 95%CI = 2.6–142.5; P = 0.004), and age (OR = 1.1; 95%CI = 1.02–1.16; P = 0.004), as the most important variables.

Conclusions

Adult scoliosis surgery should restore the ideal Roussouly sagittal profile to decrease the rate of mechanical complications, especially in patients older than 65, instrumented to the pelvis.

Graphical Abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948. https://doi.org/10.1007/s00586-005-1053-9

    Article  PubMed  Google Scholar 

  2. 2.

    Sebaaly A, Riouallon G, Obeid I et al (2018) Proximal junctional kyphosis in adult scoliosis: comparison of four radiological predictor models. Eur Spine J 27(3):613–621. https://doi.org/10.1007/s00586-017-5172-x

    Article  PubMed  Google Scholar 

  3. 3.

    Scemama C, Laouissat F, Abelin-Genevois K, Roussouly P (2017) Surgical treatment of thoraco-lumbar kyphosis (TLK) associated with low pelvic incidence. Eur Spine J 26(8):2146–2152. https://doi.org/10.1007/s00586-017-4984-z

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Barrey C, Darnis A (2015) Current strategies for the restoration of adequate lordosis during lumbar fusion. World J Orthop 6(1):117–126. https://doi.org/10.5312/wjo.v6.i1.117

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yilgor C, Sogunmez N, Boissière L et al (2017) Global alignment and proportion (GAP) score. J Bone Joint Surg Am 99(19):1661–1672. https://doi.org/10.2106/JBJS.16.01594

    Article  PubMed  Google Scholar 

  6. 6.

    Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 16:1459–1467. https://doi.org/10.1007/s00586-006-0294-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press Ltd, New York, pp 479–496

    Google Scholar 

  8. 8.

    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353

    Article  Google Scholar 

  9. 9.

    Laouissat F, Sebaaly A, Gehrchen M, Roussouly P (2018) Classification of normal sagittal spine alignment: refounding the Roussouly classification. Eur Spine J 27(8):2002–2011. https://doi.org/10.1007/s00586-017-5111-x

    Article  PubMed  Google Scholar 

  10. 10.

    Sebaaly A, Grobost P, Mallam L, Roussouly P (2017) Description of the sagittal alignment of the degenerative human spine. Eur Spine J 27:489–496. https://doi.org/10.1007/s00586-017-5404-0

    Article  PubMed  Google Scholar 

  11. 11.

    Pizones J, Martin MB, Perez-Grueso FJ et al (2019) Impact of adult scoliosis on Roussouly’s sagittal shape classification. Spine 44(4):270–279. https://doi.org/10.1097/BRS.0000000000002800

    Article  PubMed  Google Scholar 

  12. 12.

    Takemoto M, Boissière L, Vital J-M et al (2017) Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life. Eur Spine J 26(8):2176–2186. https://doi.org/10.1007/s00586-016-4872-y

    Article  PubMed  Google Scholar 

  13. 13.

    Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20(Suppl 5):609–618. https://doi.org/10.1007/s00586-011-1928-x

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sánchez-Mariscal F, Gomez-Rice A, Rodríguez-López T et al (2017) Preoperative and postoperative sagittal plane analysis in adult idiopathic scoliosis in patients older than 40 years of age. Spine J 17:56–61. https://doi.org/10.1016/j.spinee.2016.08.007

    Article  PubMed  Google Scholar 

  15. 15.

    Yilgor C, Sogunmez N, Yavuz Y et al (2017) Relative lumbar lordosis and lordosis distribution index: individualized pelvic incidence–based proportional parameters that quantify lumbar lordosis more precisely than the concept of pelvic incidence minus lumbar lordosis. Neurosurg Focus 43:E5–E9. https://doi.org/10.3171/2017.8.FOCUS17498

    Article  PubMed  Google Scholar 

  16. 16.

    Berthonnaud E, Dimnet J, Roussouly P, Labelle H (2005) Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 18:40–47

    Article  Google Scholar 

  17. 17.

    Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7(2):99–103. https://doi.org/10.1007/s005860050038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Roussouly P, Pinheiro-Franco JL (2011) Sagittal parameters of the spine: biomechanical approach. Eur Spine J 20(Suppl 5):578–585. https://doi.org/10.1007/s00586-011-1924-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Roussouly P, Nnadi C (2010) Sagittal plane deformity: an overview of interpretation and management. Eur Spine J 19:1824–1836. https://doi.org/10.1007/s00586-010-1476-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kim HJ, Bridwell KH, Lenke LG et al (2014) Patients with proximal junctional kyphosis requiring revision surgery have higher postoperative lumbar lordosis and larger sagittal balance corrections. Spine 39:E576–E580. https://doi.org/10.1097/BRS.0000000000000246

    Article  PubMed  Google Scholar 

  21. 21.

    Sebaaly A, Sylvestre C, El Quehtani Y et al (2018) Incidence and risk factors for proximal junctional kyphosis: results of a multicentric study of adult scoliosis. Clin Spine Surg 31:E178–E183. https://doi.org/10.1097/BSD.0000000000000630

    Article  PubMed  Google Scholar 

  22. 22.

    Charosky S, Guigui P, Blamoutier A et al (2012) Complications and risk factors of primary adult scoliosis surgery: a multicenter study of 306 patients. Spine 37:693–700. https://doi.org/10.1097/BRS.0b013e31822ff5c1

    Article  PubMed  Google Scholar 

  23. 23.

    Lafage R, Schwab F, Challier V et al (2016) Defining spino-pelvic alignment thresholds: should operative goals in adult spinal deformity surgery account for age? Spine 41:62–68. https://doi.org/10.1097/BRS.0000000000001171

    Article  PubMed  Google Scholar 

  24. 24.

    Liu F-Y, Wang T, Yang S-D et al (2016) Incidence and risk factors for proximal junctional kyphosis: a meta-analysis. Eur Spine J 25:2376–2383. https://doi.org/10.1007/s00586-016-4534-0

    Article  PubMed  Google Scholar 

  25. 25.

    Clément J-L, Pelletier Y, Solla F, Rampal V (2018) Surgical increase in thoracic kyphosis increases unfused lumbar lordosis in selective fusion for thoracic adolescent idiopathic scoliosis. Eur Spine J 31:291–299. https://doi.org/10.1007/s00586-018-5740-8

    Article  Google Scholar 

  26. 26.

    Lonner BS, Parent S, Shah SA et al (2018) Reciprocal changes in sagittal alignment with operative treatment of adolescent Scheuermann kyphosis-prospective evaluation of 96 patients. Spine Deform 6:177–184. https://doi.org/10.1016/j.jspd.2017.07.001

    Article  PubMed  Google Scholar 

  27. 27.

    Cecchinato R, Redaelli A, Martini C et al (2017) Long fusions to S1 with or without pelvic fixation can induce relevant acute variations in pelvic incidence: a retrospective cohort study of adult spine deformity surgery. Eur Spine J 26:436–441. https://doi.org/10.1007/s00586-017-5154-z

    Article  PubMed  Google Scholar 

  28. 28.

    Kuklo TR, Bridwell KH, Lewis SJ et al (2001) Minimum 2-year analysis of sacropelvic fixation and L5-S1 fusion using S1 and iliac screws. Spine 26:1976–1983

    CAS  Article  Google Scholar 

  29. 29.

    Kim YJ, Bridwell KH, Lenke LG et al (2006) Pseudarthrosis in adult spinal deformity following multisegmental instrumentation and arthrodesis. J Bone Joint Surg Am 88:721–728. https://doi.org/10.2106/JBJS.E.00550

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Johnson and Johnson DePuy-Synthes Spine and Medtronic research grant were received in partial support of this work.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Javier Pizones.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has institutional review board (IRB) approval/research ethics committee approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 133 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pizones, J., Moreno-Manzanaro, L., Sánchez Pérez-Grueso, F.J. et al. Restoring the ideal Roussouly sagittal profile in adult scoliosis surgery decreases the risk of mechanical complications. Eur Spine J 29, 54–62 (2020). https://doi.org/10.1007/s00586-019-06176-x

Download citation

Keywords

  • Adult scoliosis
  • Roussouly classification
  • Sagittal profiles
  • Mechanical complications
  • Adult deformity surgery