Advertisement

Radiological protocol in spinal trauma: literature review and Spinal Cord Society position statement

  • P. K. Karthik Yelamarthy
  • H. S. ChhabraEmail author
  • Vedant Vaksha
  • Yatish Agarwal
  • Anita Agarwal
  • Kalidutta Das
  • Hans Joseph Erli
  • Mihir Bapat
  • Roop Singh
  • Darshan Gautam
  • Rushama Tandon
  • G. Balamurali
  • Sriram Rajan
Review Article

Abstract

Purpose

The Spinal Cord Society constituted a panel tasked with reviewing the literature on the radiological evaluation of spinal trauma with or without spinal cord injury and recommend a protocol. This position statement provides recommendations for the use of each modality, i.e., radiographs (X-rays), computed tomography (CT), magnetic resonance imaging (MRI), as well as vascular imaging, and makes suggestions on identifying or clearing spinal injury in trauma patients.

Methods

PubMed was searched for the corresponding keywords from January 1, 1980, to August 1, 2017. A MEDLINE search was subsequently undertaken after applying MeSH filters. Appropriate cross-references were retrieved. Out of the 545 articles retrieved, 105 relevant papers that address the present topic were studied and the extracted content was circulated for further discussions. A draft position statement was compiled and circulated among the panel members via e-mail. The draft was modified by incorporating relevant suggestions to reach a consensus.

Results and conclusion

For imaging cervical and thoracolumbar spine trauma patients, CT without contrast is generally considered to be the initial line of imaging and radiographs are required if CT is unavailable or unaffordable. CT screening in polytrauma cases is best done with a multidetector CT by utilizing the reformatted images obtained when scanning the chest, abdomen, and pelvis (CT-CAP). MRI is indicated in cases with neurological involvement and advanced cervical degenerative changes and to determine the extent of soft tissue injury, i.e., disco-ligamentous injuries as well as epidural space compromise. MRI is also usually performed when X-rays and CT are unable to correlate with patient symptomatology.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Cervical spine trauma Thoracolumbar spine trauma Spinal cord injury X-rays Computed tomography Magnetic resonance imaging Protocol Position statement 

Notes

Funding

There are no financial grants received for conducting this study.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest.

Supplementary material

586_2019_6112_MOESM1_ESM.pptx (159 kb)
Supplementary material 1 (PPTX 158 kb)
586_2019_6112_MOESM2_ESM.doc (120 kb)
Supplementary material 2 (DOC 214 kb)

References

  1. 1.
    Theocharopoulos N, Chatzakis G, Damilakis J (2009) Is radiography justified for the evaluation of patients presenting with cervical spine trauma? Med Phys 36:4461–4470.  https://doi.org/10.1118/1.3213521 CrossRefPubMedGoogle Scholar
  2. 2.
    Hoffman JR, Wolfson AB, Todd K, Mower WR (1998) Selective cervical spine radiography in blunt trauma: methodology of the national emergency X-radiography utilization study (NEXUS). Ann Emerg Med 32:461–469.  https://doi.org/10.1016/S0196-0644(98)70176-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Stiell IG, Wells GA, Vandemheen KL et al (2001) The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 286:1841–1848.  https://doi.org/10.1001/jama.286.15.1841 CrossRefPubMedGoogle Scholar
  4. 4.
    Stiell IG, Clement CM, McKnight RD et al (2003) The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med 349:2510–2518.  https://doi.org/10.1056/NEJMoa031375 CrossRefPubMedGoogle Scholar
  5. 5.
    Schwartz ED, Flanders AE (2007) Spinal trauma: imaging, diagnosis, and management, 1st edn. Lippincott Williams & Wilkins, Philadelphia, pp 1–3Google Scholar
  6. 6.
    Eze CU, Abonyi LC, Ohagwu CC, Eze JC (2013) Pattern of plain X-ray findings in bone injuries among motorcycle accident victims in Lagos, Nigeria. I Res J Med Sci 1:51–55Google Scholar
  7. 7.
    Gale SC, Gracias VH, Reilly PM, Schwab CW (2005) The inefficiency of plain radiography to evaluate the cervical spine after blunt trauma. J Trauma Inj Infect Crit Care 59:1121–1125.  https://doi.org/10.1097/01.ta.0000188632.79060.ba CrossRefGoogle Scholar
  8. 8.
    Berne JD, Velmahos GC, El-Tawil Q et al (1999) Value of complete cervical helical computed tomographic scanning in identifying cervical spine injury in the unevaluable blunt trauma patient with multiple injuries: a prospective study. J Trauma Inj Inf Crit Care 47:896–902CrossRefGoogle Scholar
  9. 9.
    Mathen R, Inaba K, Munera F et al (2007) Prospective evaluation of multislice computed tomography versus plain radiographic cervical spine clearance in trauma patients. J Trauma Inj Infect Crit Care 62:1427–1431.  https://doi.org/10.1097/01.ta.0000239813.78603.15 CrossRefGoogle Scholar
  10. 10.
    Diaz JJ Jr, Aulino JM, Collier B et al (2018) The early work-up for isolated ligamentous injury of the cervical spine: does computed tomography scan have a role? J Trauma 59(4):897–903.  https://doi.org/10.1097/01.ta.0000188012.84356.dc CrossRefGoogle Scholar
  11. 11.
    Diaz JJ, Gillman C, Morris JA et al (2003) Are five-view plain films of the cervical spine unreliable? A prospective evaluation in blunt trauma patients with altered mental status. J Trauma 55:658–664.  https://doi.org/10.1097/01.TA.0000088120.99247.4A CrossRefPubMedGoogle Scholar
  12. 12.
    Holmes JF, Akkinepalli R (2005) Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma 58:902–905.  https://doi.org/10.1097/01.TA.0000162138.36519.2A CrossRefPubMedGoogle Scholar
  13. 13.
    Blackmore CC, Ramsey SD, Mann FA, Deyo RA (1999) Cervical spine screening with CT in Trauma patients: a cost-effectiveness analysis. Radiology 212:117–125.  https://doi.org/10.1148/radiology.212.1.r99jl08117 CrossRefPubMedGoogle Scholar
  14. 14.
    Daffner RH, Hackney DB (2007) ACR appropriateness criteria for suspected spine trauma. J Am Coll Radiol 4:762–775.  https://doi.org/10.1016/j.jacr.2007.08.006 CrossRefPubMedGoogle Scholar
  15. 15.
    Kortbeek JB, Al Turki SA, Ali J et al (2008) Advanced trauma life support, the evidence for change. J Trauma Inj Infect Crit Care 64:1638–1650.  https://doi.org/10.1097/ta.0b013e3181744b03 CrossRefGoogle Scholar
  16. 16.
    Ackland H, Cameron P (2012) RACGP: Cervical spine—assessment following trauma. Aust Fam Physician 41:196–201PubMedGoogle Scholar
  17. 17.
    Vaccaro AR, Hulbert RJ, Patel AA et al (2007) The subaxial cervical spine injury classification system: a novel approach to recognize the importance of morphology, neurology, and integrity of the disco-ligamentous complex. Spine (Phila Pa 1976) 32:2365.  https://doi.org/10.1097/brs.0b013e3181557b92 CrossRefGoogle Scholar
  18. 18.
    Geck MJ, Yoo S, Wang JC (2001) Assessment of cervical ligamentous injury in trauma patients using MRI. J Spinal Disord 14:371–377.  https://doi.org/10.1097/00002517-200110000-00001 CrossRefPubMedGoogle Scholar
  19. 19.
    Insko EK, Gracias VH, Gupta R et al (2002) Utility of flexion and extension radiographs of the cervical spine in the acute evaluation of blunt trauma. J Trauma 53:426–429.  https://doi.org/10.1097/00005373-200209000-00005 CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis LM, Docherty M, Ruoff BE et al (1991) Flexion-extension views in the evaluation of cervical-spine injuries. Ann Emerg Med 20:117–121.  https://doi.org/10.1016/S0196-0644(05)81205-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Brady WJ, Moghtader J, Cutcher D et al (1999) ED use of flexion-extension cervical spine radiography in the evaluation of blunt trauma. Am J Emerg Med 17:504–508.  https://doi.org/10.1016/S0735-6757(99)90185-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Pollack CV, Hendey GW, Martin DR et al (2001) Use of flexion-extension radiographs of the cervical spine in blunt trauma. Ann Emerg Med 38:8–11.  https://doi.org/10.1067/mem.2001.116810 CrossRefPubMedGoogle Scholar
  23. 23.
    Ryken TC, Hadley MN, Walters BC et al (2013) Radiographic assessment. Neurosurgery 72:54–72.  https://doi.org/10.1227/NEU.0b013e318276edee CrossRefPubMedGoogle Scholar
  24. 24.
    Griffen MM, Frykberg ER, Kerwin AJ et al (2003) Radiographic clearance of blunt cervical spine injury: plain radiograph or computed tomography scan? J Trauma 55:222–227.  https://doi.org/10.1097/01.TA.0000083332.93868.E2 CrossRefPubMedGoogle Scholar
  25. 25.
    Brohi K, Healy M, Fotheringham T et al (2005) Helical computed tomographic scanning for the evaluation of the cervical spine in the unconscious, intubated trauma patient. J Trauma 58:897–901.  https://doi.org/10.1097/01.TA.00005373-200505000-00003 CrossRefPubMedGoogle Scholar
  26. 26.
    Anglen J, Metzler M, Bunn P, Griffiths H (2002) Flexion and extension views are not cost-effective in a cervical spine clearance protocol for obtunded trauma patients. J Trauma 52:54–59PubMedGoogle Scholar
  27. 27.
    Bolinger B, Shartz M, Marion D (2004) Bedside fluoroscopic flexion and extension cervical spine radiographs for clearance of the cervical spine in comatose trauma patients. J Trauma 56:132–136.  https://doi.org/10.1097/01.TA.0000044629.69247.0A CrossRefPubMedGoogle Scholar
  28. 28.
    Davis JW, Kaups KL, Cunningham MA et al (2001) Routine evaluation of the cervical spine in head-injured patients with dynamic fluoroscopy: a reappraisal. J Trauma 50:1044–1047CrossRefPubMedGoogle Scholar
  29. 29.
    Padayachee L, Cooper DJ, Irons S et al (2006) Cervical spine clearance in unconscious traumatic brain injury patients: dynamic flexion-extension fluoroscopy versus computed tomography with three-dimensional reconstruction. J Trauma Inj Infect Crit Care 60:341–345.  https://doi.org/10.1097/01.ta.0000195716.73126.12 CrossRefGoogle Scholar
  30. 30.
    Stassen NA, Williams VA, Gestring ML et al (2006) Magnetic resonance imaging in combination with helical computed tomography provides a safe and efficient method of cervical spine clearance in the obtunded trauma patient. J Trauma Inj Infect Crit Care 60:171–177.  https://doi.org/10.1097/01.ta.0000197647.44202.de CrossRefGoogle Scholar
  31. 31.
    Hogan GJ, Mirvis SE, Shanmuganathan K, Scalea TM (2005) Exclusion of unstable cervical spine injury in obtunded patients with blunt trauma: is MR imaging needed when multi-detector row CT findings are normal? Radiology 237:106–113.  https://doi.org/10.1148/radiol.2371040697 CrossRefPubMedGoogle Scholar
  32. 32.
    D’Alise MD, Benzel EC (1999) Magnetic resonance imaging evaluation of the cervical spine in the comatose or obtunded trauma patient. Embase J Neurosurg 91:54–59Google Scholar
  33. 33.
    Albrecht RM, Kingsley D, Schermer CR et al (2001) Evaluation of cervical spine in intensive care patients following blunt trauma. World J Surg 25:1089–1096CrossRefPubMedGoogle Scholar
  34. 34.
    Horn EM, Lekovic GP, Feiz-Erfan I et al (2004) Cervical magnetic resonance imaging abnormalities not predictive of cervical spine instability in traumatically injured patients. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2004. J Neurosurg Spine 1:39–42.  https://doi.org/10.3171/spi.2004.1.1.0039 CrossRefPubMedGoogle Scholar
  35. 35.
    Ghanta MK, Smith LM, Polin RS et al (2002) An analysis of Eastern Association for the Surgery of Trauma practice guidelines for cervical spine evaluation in a series of patients with multiple imaging techniques. Am Surg 68:563–568PubMedGoogle Scholar
  36. 36.
    Sarani B, Waring S, Sonnad S, Schwab CW (2007) Magnetic resonance imaging is a useful adjunct in the evaluation of the cervical spine of injured patients. J Trauma 63:637–640.  https://doi.org/10.1097/TA.0b013e31812eedb1 CrossRefPubMedGoogle Scholar
  37. 37.
    Schuster R, Waxman K, Sanchez B et al (2005) Magnetic resonance imaging is not needed to clear cervical spines in blunt trauma patients with normal computed tomographic results and no motor deficits. Arch Surg 140:762–766.  https://doi.org/10.1001/archsurg.140.8.762 CrossRefPubMedGoogle Scholar
  38. 38.
    Adams JM, Cockburn MIE, Difazio LT et al (2006) Spinal clearance in the difficult trauma patient: a role for screening MRI of the spine. Am Surg 72:101–105PubMedGoogle Scholar
  39. 39.
    Como J, Thompson MA, Anderson JS et al (2007) Is magnetic resonance imaging essential in clearing the cervical spine in obtunded patients with blunt trauma? J Trauma 63:544–549.  https://doi.org/10.1097/TA.0b013e31812e51ae CrossRefPubMedGoogle Scholar
  40. 40.
    Stelfox HT, Velmahos GC, Gettings EC et al (2007) Computed tomography for early and safe discontinuation of cervical spine immobilization in obtunded multiply injured patients. J Trauma 63:630–636.  https://doi.org/10.1097/TA.0b013e318076b537 CrossRefPubMedGoogle Scholar
  41. 41.
    Plumb JOM, Morris CG (2012) Clinical review: spinal imaging for the adult obtunded blunt trauma patient—update from 2004. Intensive Care Med 38:752–771.  https://doi.org/10.1007/s00134-012-2485-4 CrossRefPubMedGoogle Scholar
  42. 42.
    Biffl WL, Moore EE, Ryu RK et al (1998) The unrecognized epidemic of blunt carotid arterial injuries: early diagnosis improves neurologic outcome. Ann Surg 228:462–470.  https://doi.org/10.1097/00000658-199810000-00003 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mutze S, Rademacher G, Matthes G et al (2005) Blunt cerebrovascular injury in patients with blunt multiple trauma: diagnostic accuracy of duplex doppler US and early CT angiography. Radiology 237:884–892.  https://doi.org/10.1148/radiol.2373042189 CrossRefPubMedGoogle Scholar
  44. 44.
    Kaye D, Brasel KJ, Neideen T, Weigelt JA (2005) Screening for blunt cerebrovascular injuries is cost-effective. J Trauma 70(5):1051–1057CrossRefGoogle Scholar
  45. 45.
    DiPerna CA, Rowe VL, Terramani TT et al (2002) Clinical importance of the “seat belt sign” in blunt trauma to the neck. Am Surg 68:441–445PubMedGoogle Scholar
  46. 46.
    Rozycki GS, Tremblay L, Feliciano DV et al (2002) A prospective study for the detection of vascular injury in adult and pediatric patients with cervicothoracic seatbelt signs. J Trauma 52(618–624):7pGoogle Scholar
  47. 47.
    Kral T, Schaller C, Urbach H, Schramm J (2002) Vertebral artery injury after cervical spine trauma: a prospective study. Zentralbl Neurochir 63:153–158.  https://doi.org/10.1055/s-2002-36433 CrossRefPubMedGoogle Scholar
  48. 48.
    Biffl WL, Moore EE, Offner PJ et al (1999) Optimizing screening for blunt cerebrovascular injuries. Am J Surg 178:517–522.  https://doi.org/10.1016/S0002-9610(99)00245-7 CrossRefPubMedGoogle Scholar
  49. 49.
    Cothren CC, Moore EE, Biffl WL et al (2003) Cervical spine fracture patterns predictive of blunt vertebral artery injury. J Trauma 55:811–813.  https://doi.org/10.1097/01.TA.0000092700.92587.32 CrossRefPubMedGoogle Scholar
  50. 50.
    Willinsky RA, Taylor SM, terBrugge K et al (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528.  https://doi.org/10.1148/radiol.2272012071 CrossRefPubMedGoogle Scholar
  51. 51.
    Cogbill TH, Moore EE, Meissner M et al (1994) The spectrum of blunt injury to the carotid artery: a multicenter perspective. J Trauma 37:473–479CrossRefPubMedGoogle Scholar
  52. 52.
    Sturzenegger M, Mattle HP, Rivoir A et al (1993) Ultrasound findings in spontaneous extracranial vertebral artery dissection. Stroke 24:1910–1921.  https://doi.org/10.1161/01.STR.24.12.1910 CrossRefPubMedGoogle Scholar
  53. 53.
    Friedman D, Flanders A, Thomas C et al (1995) Vertebral artery injury after acute cervical spine trauma: rate of occurrence as detected by MR angiography and assessment of clinical consequences. Am J Roentgenol 164:443–447.  https://doi.org/10.2214/ajr.164.2.7839986 CrossRefGoogle Scholar
  54. 54.
    Weller SJ, Rossitch E, Malek AM (1999) Detection of vertebral artery injury after cervical spine trauma using magnetic resonance angiography. J Trauma Inj Infect Crit Care 46:660–666.  https://doi.org/10.1097/00005373-199904000-00017 CrossRefGoogle Scholar
  55. 55.
    Bok AP, Peter JC (1996) Carotid and vertebral artery occlusion after blunt cervical injury: the role of MR angiography in early diagnosis. J Trauma-Injury Infect Crit Care 40:968–972CrossRefGoogle Scholar
  56. 56.
    Biffl WL, Ray CE, Moore EE et al (2002) Treatment-related outcomes from blunt cerebrovascular injuries importance of routine follow-up arteriography. Ann Surg 235:699–707.  https://doi.org/10.1097/00000658-200205000-00012 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lévy C, Laissy JP, Raveau V et al (1994) Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology 190:97–103.  https://doi.org/10.1148/radiology.190.1.8259436 CrossRefPubMedGoogle Scholar
  58. 58.
    Eastman AL, Chason DP, Perez CL et al (2006) Computed tomographic angiography for the diagnosis of blunt cervical vascular injury: is it ready for primetime? J Trauma Inj Infect Crit Care 60:925–929.  https://doi.org/10.1097/01.ta.0000197479.28714.62 CrossRefGoogle Scholar
  59. 59.
    Eastman AL, Muraliraj V, Sperry JL, Minei JP (2009) CTA-based screening reduces time to diagnosis and stroke rate in blunt cervical vascular injury. J Trauma Inj Infect Crit Care 67:551–555.  https://doi.org/10.1097/TA.0b013e3181b84408 CrossRefGoogle Scholar
  60. 60.
    Vertinsky AT, Schwartz NE, Fischbein NJ et al (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. Am J Neuroradiol 29:1753–1760.  https://doi.org/10.3174/ajnr.A1189 CrossRefPubMedGoogle Scholar
  61. 61.
    Terregino CA, Ross SE, Lipinski MF et al (1995) Selective indications for thoracic and lumbar radiography in blunt trauma. Ann Emerg Med 26:126–129CrossRefPubMedGoogle Scholar
  62. 62.
    Reid DC, Henderson R, Saboe L, Miller JD (1987) Etiology and clinical course of missed spine fractures. J Trauma 27:980–986CrossRefPubMedGoogle Scholar
  63. 63.
    Meldon SW, Moettus LN (1995) Thoracolumbar spine fractures: clinical presentation and the effect of altered sensorium and major injury. J Trauma Inj Infect Crit Care 39:1110–1114.  https://doi.org/10.1097/00005373-199512000-00017 CrossRefGoogle Scholar
  64. 64.
    Frankel HL, Rozycki GS, Ochsner MG et al (1994) Indications for obtaining surveillance thoracic and lumbar spine radiographs. J Trauma 37:673–676CrossRefPubMedGoogle Scholar
  65. 65.
    Cooper C, Dunham CM, Rodriguez A (1995) Falls and major injuries are risk factors for thoracolumbar fractures: cognitive impairment and multiple injuries impede the detection of back pain and tenderness. J Trauma Inj Infect Crit Care 38:692–696.  https://doi.org/10.1097/00005373-199505000-00003 CrossRefGoogle Scholar
  66. 66.
    Stanislas MJ, Latham JM, Porter KM et al (1998) A high risk group for thoracolumbar fractures. Injury 29:15–18.  https://doi.org/10.1016/S0020138397001095 CrossRefPubMedGoogle Scholar
  67. 67.
    Saboe LA, Reid DC, Davis LA et al (1991) Spine trauma and associated injuries. J Trauma 31:43–48CrossRefPubMedGoogle Scholar
  68. 68.
    Born CT, Ross SE, Iannacone WM et al (1989) Delayed identification of skeletal injury in multisystem trauma: the “missed” fracture. J Trauma 29:1643–1646CrossRefPubMedGoogle Scholar
  69. 69.
    Savitsky E, Votey S (1997) Emergency department approach to acute thoracolumbar spine injury. J Emerg Med 15:49–60.  https://doi.org/10.1016/S0736-4679(96)00258-2 CrossRefPubMedGoogle Scholar
  70. 70.
    Rabinovici R, Ovadia P, Mathiak G, Abdullah F (1999) Abdominal injuries associated with lumbar spine fractures in blunt trauma. Injury 30:471–474CrossRefPubMedGoogle Scholar
  71. 71.
    Hoffman JR, Mower WR, Wolfson AB et al (2000) Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. N Engl J Med 343:94–99.  https://doi.org/10.1056/NEJM200007133430203 CrossRefPubMedGoogle Scholar
  72. 72.
    Handelberg F, Bellemans MA, Opdecam P, Casteleyn PP (1981) The use of computerized tomography in the diagnosis of the thoracolumbar injury. J Bone Jt Surg Br 63–B:337–341CrossRefGoogle Scholar
  73. 73.
    Keene JS, Goletz TH, Lilleas F et al (1982) Diagnosis of vertebral fractures. A comparison of conventional radiography, conventional tomography, and computed axial tomography. J Bone Jt Surg Am 64:586–594CrossRefGoogle Scholar
  74. 74.
    Krueger MA, Green DA, Hoyt D, Garfin SR (1996) Overlooked spine injuries associated with lumbar transverse process fractures. Clin Orthop Relat Res 352:191–195.  https://doi.org/10.1097/00003086-199807000-00015 CrossRefGoogle Scholar
  75. 75.
    Patten RM, Gunberg SR, Brandenburger DK (2000) Frequency and importance of transverse process fractures in the lumbar vertebrae at helical abdominal CT in patients with trauma. Radiology 215:831–834.  https://doi.org/10.1148/radiology.215.3.r00jn27831 CrossRefPubMedGoogle Scholar
  76. 76.
    Rhee PM, Bridgeman A, Acosta JA et al (2002) Lumbar fractures in adult blunt trauma: axial and single-slice helical abdominal and pelvic computed tomographic scans versus portable plain films. J Trauma 53:663–667.  https://doi.org/10.1097/00005373-200210000-00007 (discussion 667) CrossRefPubMedGoogle Scholar
  77. 77.
    Hauser CJ, Visvikis G, Hinrichs C et al (2003) Prospective validation of computed tomographic screening of the thoracolumbar spine in trauma. J Trauma Inj Infect Crit Care 55:228–235.  https://doi.org/10.1097/01.TA.0000076622.19246.CF CrossRefGoogle Scholar
  78. 78.
    Gestring ML, Gracias VH, Feliciano MA et al (2002) Evaluation of the lower spine after blunt trauma using abdominal computed tomographic scanning supplemented with lateral scanograms. J Trauma 53:9–14CrossRefPubMedGoogle Scholar
  79. 79.
    Sheridan R, Peralta R, Rhea J et al (2003) Reformatted visceral protocol helical computed tomographic scanning allows conventional radiographs of the thoracic and lumbar spine to be eliminated in the evaluation of blunt trauma patients. J Trauma 55:665–669.  https://doi.org/10.1097/01.TA.0000048094.38625.B5 CrossRefPubMedGoogle Scholar
  80. 80.
    Wintermark M, Mouhsine E, Theumann N et al (2003) Thoracolumbar spine fractures in patients who have sustained severe trauma: depiction with multi-detector row CT. Radiology 227:681–689.  https://doi.org/10.1148/radiol.2273020592 CrossRefPubMedGoogle Scholar
  81. 81.
    Brandt M-M, Wahl WL, Yeom K et al (2004) Computed tomographic scanning reduces cost and time of complete spine evaluation. J Trauma 56:1022-6-8.  https://doi.org/10.1097/01.ta.0000124304.68584.2c CrossRefGoogle Scholar
  82. 82.
    Berry GE, Adams S, Harris MB et al (2005) Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis. J Trauma Inj Infect Crit Care 59:1410–1413.  https://doi.org/10.1097/01.ta.0000197279.97113.0e CrossRefGoogle Scholar
  83. 83.
    Ptak T, Rhea JT, Novelline RA (2003) Radiation dose is reduced with a single-pass whole-body multi-detector row CT trauma protocol compared with a conventional segmented method: initial experience. Radiology 229:902–905.  https://doi.org/10.1148/radiol.2293021651 CrossRefPubMedGoogle Scholar
  84. 84.
    Kim S, Yoon CS, Ryu JA et al (2010) A comparison of the diagnostic performances of visceral organ-targeted versus spine-targeted protocols for the evaluation of spinal fractures using sixteen-channel multidetector row computed tomography: is additional spine-targeted computed tomography nec. J Trauma 69:437–446.  https://doi.org/10.1097/TA.0b013e3181e491d8 CrossRefPubMedGoogle Scholar
  85. 85.
    Howes MC, Pearce AP (2006) State of play: clearing the thoracolumbar spine in blunt trauma victims. Emerg Med Australas 18:471–477.  https://doi.org/10.1111/j.1742-6723.2006.00893.x CrossRefPubMedGoogle Scholar
  86. 86.
    Kalra V, Gulati S, Kamate M, Garg A (2006) SCIWORA-spinal cord injury without radiological abnormality. Indian J Pediatr 73:829–831.  https://doi.org/10.1007/BF02790395 CrossRefPubMedGoogle Scholar
  87. 87.
    Wilmink JT (1999) MR imaging of the spine: trauma and degenerative disease. Eur Radiol 9:1259–1266.  https://doi.org/10.1007/s003300050832 CrossRefPubMedGoogle Scholar
  88. 88.
    Bailes JE, Petschauer M, Guskiewicz KM (2007) Management of cervical spine injuries in athletes. J Athl Train 42:126–134PubMedPubMedCentralGoogle Scholar
  89. 89.
    Forster BB, Koopmans RA (1995) Magnetic resonance imaging of acute trauma of the cervical spine: spectrum of findings. Can Assoc Radiol J 46:168–173PubMedGoogle Scholar
  90. 90.
    Voormolen MHJ, van Rooij WJ, van der Graaf Y et al (2006) Bone marrow edema in osteoporotic vertebral compression fractures after percutaneous vertebroplasty and relation with clinical outcome. AJNR Am J Neuroradiol 27:983–988PubMedGoogle Scholar
  91. 91.
    Kumar Y, Hayashi D (2016) Role of magnetic resonance imaging in acute spinal trauma: a pictorial review. BMC Musculoskelet Disord 17:10–11.  https://doi.org/10.1186/s12891-016-1169-6 CrossRefGoogle Scholar
  92. 92.
    Van Goethem JW, Ozsarlak O, Parizel PM (2003) Cervical spine fractures and soft tissue injuries. JBR-BTR 86:230–234PubMedGoogle Scholar
  93. 93.
    Kulkarni MV, McArdle CB, Kopanicky D et al (1987) Acute spinal cord injury: MR imaging at 1.5 T. Radiology 164:837–843.  https://doi.org/10.1148/radiology.164.3.3615885 CrossRefPubMedGoogle Scholar
  94. 94.
    Brandser EA, El-Khoury GY (1997) Thoracic and lumbar spine trauma. Radiol Clin North Am 35:533–557PubMedGoogle Scholar
  95. 95.
    Vaccaro AR, Lehman RA, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30:2325–2333.  https://doi.org/10.1016/s0276-1092(08)70533-9 CrossRefGoogle Scholar
  96. 96.
    Sharma OP, Oswanski MF, Yazdi JS et al (2007) Assessment for additional spinal trauma in patients with cervical spine injury. Am Surg 73:70–74PubMedGoogle Scholar
  97. 97.
    Beekley A et al (2013) Evaluation of the risk of noncontiguous fractures of the spine in blunt trauma. J Trauma Acute Care Surg. 75(1):135–139CrossRefPubMedGoogle Scholar
  98. 98.
    Winslow JE, Hensberry R, Bozeman WP et al (2006) Risk of thoracolumbar fractures doubled in victims of motor vehicle collisions with cervical spine fractures. J Trauma Inj Infect Crit Care 61:686–687.  https://doi.org/10.1097/01.ta.0000196925.99822.37 CrossRefGoogle Scholar
  99. 99.
    Korres DS, Boscainos PJ, Papagelopoulos PJ et al (2003) Multiple level noncontiguous fractures of the spine. Clin Orthop Relat Res 411:95–102.  https://doi.org/10.1097/01.blo.0000068362.47147.a2 CrossRefGoogle Scholar
  100. 100.
    Hsu JM, Joseph T, Ellis AM (2003) Thoracolumbar fracture in blunt trauma patients: guidelines for diagnosis and imaging. Injury 34:426–433.  https://doi.org/10.1016/S0020-1383(02)00368-6 CrossRefPubMedGoogle Scholar
  101. 101.
    Holmes JF, Panacek EA, Miller PQ et al (2003) Prospective evaluation of criteria for obtaining thoracolumbar radiographs in trauma patients. J Emerg Med 24:1–7.  https://doi.org/10.1016/S0736-4679(02)00659-5 CrossRefPubMedGoogle Scholar
  102. 102.
    Rajasekaran S, Kanna R, Shetty A (2015) Management of thoracolumbar spine trauma an overview. Indian J Orthop 49:72.  https://doi.org/10.4103/0019-5413.143914 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Cothren CC, Moore EE, Biffl WL et al (2004) Anticoagulation is the gold standard therapy for blunt carotid injuries to reduce stroke rate. Arch Surg 139:540–546.  https://doi.org/10.1001/archsurg.139.5.540 CrossRefPubMedGoogle Scholar
  104. 104.
    Goldberg AL, Kershah SM (2010) Advances in imaging of vertebral and spinal cord injury. J Spinal Cord Med 33:105–116CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Agarwal Y, Sureka B, Kumar N (2015) Radiologic imaging in spinal trauma. In: Chhabra HS (ed) ISCoS textbook of comprehensive management of spinal cord injuries, 1st edn. Wolters Kluwer, Chandigarh, pp 100–133Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. K. Karthik Yelamarthy
    • 1
  • H. S. Chhabra
    • 1
    Email author
  • Vedant Vaksha
    • 1
  • Yatish Agarwal
    • 2
  • Anita Agarwal
    • 1
  • Kalidutta Das
    • 1
  • Hans Joseph Erli
    • 3
  • Mihir Bapat
    • 4
  • Roop Singh
    • 5
  • Darshan Gautam
    • 6
  • Rushama Tandon
    • 7
  • G. Balamurali
    • 8
  • Sriram Rajan
    • 9
  1. 1.Indian Spinal Injuries CentreNew DelhiIndia
  2. 2.Department of Diagnostic Radiology and ImagingSafdarjung Hospital and VM Medical CollegeNew DelhiIndia
  3. 3.Centre for Musculoskeletal SurgeryVivantes Humboldt HospitalBerlinGermany
  4. 4.Kokilaben Dhirubhai Ambani Hospital and Medical Research InstituteMumbaiIndia
  5. 5.PGIMSRohtakIndia
  6. 6.Indian Spine and Bone HospitalKotaIndia
  7. 7.Northern Railway Central HospitalNew DelhiIndia
  8. 8.Kauvery Spine InstituteChennaiIndia
  9. 9.Diwan Chand Satyapal Aggarwal Imaging Research CentreNew DelhiIndia

Personalised recommendations