Advertisement

The factors related to the poor ADL in the patients with osteoporotic vertebral fracture after instrumentation surgery

  • Kazuma MurataEmail author
  • Yuji Matsuoka
  • Hirosuke Nishimura
  • Kenji Endo
  • Hidekazu Suzuki
  • Taichiro Takamatsu
  • Yasunobu Sawaji
  • Takato Aihara
  • Takuya Kusakabe
  • Asato Maekawa
  • Kengo Yamamoto
  • Kei Watanabe
  • Takashi Kaito
  • Hidetomi Terai
  • Koji Tamai
  • Atushi Tagami
  • Toshitaka Yoshii
  • Katsumi Harimaya
  • Kenichi Kawaguchi
  • Atsushi Kimura
  • Gen Inoue
  • Atsushi Nakano
  • Daisuke Sakai
  • Akihiko Hiyama
  • Shota Ikegami
  • Seiji Ohtori
  • Takeo Furuya
  • Sumihisa Orita
  • Shiro Imagama
  • Kazuyoshi Kobayashi
  • Katsuhito Kiyasu
  • Hideki Murakami
  • Katsuhito Yoshioka
  • Shoji Seki
  • Michio Hongo
  • Kenichiro Kakutani
  • Takashi Yurube
  • Yasuchika Aoki
  • Hiroshi Uei
  • Yasumitsu Ajiro
  • Masahiko Takahata
  • Hirooki Endo
  • Tetsuya Abe
  • Kazuyoshi Nakanishi
  • Kota Watanabe
  • Eijiro Okada
  • Naobumi Hosogane
  • Haruki Funao
  • Norihiro Isogai
  • Ken Ishii
Original Article
  • 47 Downloads

Abstract

Purpose

Osteoporotic vertebral fracture (OVF) with nonunion or neurological deficit may be a candidate for surgical treatment. However, some patients do not show improvement as expected. Therefore, we conducted a nationwide multicenter study to determine the predictors for postoperative poor activity of daily living (ADL) in patients with OVF.

Methods

We retrospectively reviewed the case histories of 309 patients with OVF who underwent surgery. To determine the factors predicting postoperative poor ADL, uni- and multivariate statistical analyses were performed.

Results

The frequency of poor ADL at final follow-up period was 9.1%. In univariate analysis, preoperative neurological deficit (OR, 4.1; 95% CI, 1.8–10.3; P < 0.001), perioperative complication (OR, 3.4; P = 0.006), absence of preoperative bone-modifying agent (BMA) administration (OR, 2.7; P = 0.03), and absence of postoperative recombinant human parathyroid hormone (rPTH) administration (OR, 3.9; P = 0.006) were significantly associated. In multivariate analysis, preoperative neurological deficit (OR, 4.6; P < 0.001), perioperative complication (OR, 3.4; P = 0.01), and absence of postoperative rPTH administration (OR, 3.9; P = 0.02) showed statistical significance.

Conclusions

Preoperative neurological deficit, perioperative complication, and absence of postoperative rPTH administration were considered as predictors for postoperative poor ADL in patients with OVF. Neurological deficits and complications are often inevitable factors; therefore, rPTH is an important option for postoperative treatment for OVF.

Graphic abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Osteoporotic vertebral fracture Activity of daily living Parathyroid hormone 

Notes

Acknowledgements

The authors are indebted to the medical editors from the Department of International Medical Communications of Tokyo Medical University for editing and reviewing the initial English manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest related directly or indirectly to this study.

Ethical approval

This study was approved by the Ethics Review Committee of all institute involved.

Supplementary material

586_2019_6092_MOESM1_ESM.pptx (634 kb)
Supplementary material 1 (PPTX 634 kb)

References

  1. 1.
    Steel H (1951) Kümmell’s disease. Am J Surg 81:161–167CrossRefGoogle Scholar
  2. 2.
    Cauley JA, Hochberg MC, Lui L-Y et al (2007) Long-term risk of incident vertebral fractures. JAMA 298:2761–2767CrossRefGoogle Scholar
  3. 3.
    Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448CrossRefGoogle Scholar
  4. 4.
    Suzuki N, Ogikubo O, Hansson T (2008) The course of the acute vertebral body fragility fracture: its effect on pain, disability and quality of life during 12 months. Eur Spine J 17:1380–1390CrossRefGoogle Scholar
  5. 5.
    Itoi E, Sakurai M, Mizunashi K et al (1990) Long-term observations of vertebral fractures in spinal osteoporotics. Calcif Tissue Int 47:202–208CrossRefGoogle Scholar
  6. 6.
    Hasegawa K, Homma T, Uchiyama S et al (1998) Vertebral pseudarthrosis in the osteoporotic spine. Spine 23:2201–2206CrossRefGoogle Scholar
  7. 7.
    Kanchiku T, Imajo Y, Suzuki H et al (2014) Usefulness of an early MRI-based classification system for predicting vertebral collapse and pseudoarthrosis after osteoporotic vertebral fractures. J Spinal Disord Tech 27:E61–E65CrossRefGoogle Scholar
  8. 8.
    Omi H, Yokoyama T, Ono A et al (2014) Can MRI predict subsequent pseudarthrosis resulting from osteoporotic thoracolumbar vertebral fractures? Eur Spine J 23:2705–2710CrossRefGoogle Scholar
  9. 9.
    Sugita M, Watanabe N, Mikami Y et al (2005) Classification of vertebral compression fractures in the osteoporotic spine. J Spinal Disord Tech 18:376–381CrossRefGoogle Scholar
  10. 10.
    Ho SC, Lau EM, Woo J et al (1999) The prevalence of osteoporosis in the Hong Kong Chinese female population. Maturitas 32:171–178CrossRefGoogle Scholar
  11. 11.
    Lee YL, Yip KM (1996) The osteoporotic spine. Clin Orthop Relat Res 323:91–97CrossRefGoogle Scholar
  12. 12.
    Kaneda K, Taneichi H, Abumi K et al (1997) Anterior decompression and stabilization with the Kaneda device for thoracolumbar burst fractures associated with neurological deficits. J Bone Joint Surg Am 79:69–83CrossRefGoogle Scholar
  13. 13.
    Ataka H, Tanno T, Yamazaki M (2009) Posterior instrumented fusion without neural decompression for incomplete neurological deficits following vertebral collapse in the osteoporotic thoracolumbar spine. Eur Spine J 18:69–76CrossRefGoogle Scholar
  14. 14.
    Suk S-I, Kim J-H, Lee S-M et al (2003) Anterior-posterior surgery versus posterior closing wedge osteotomy in posttraumatic kyphosis with neurologic compromised osteoporotic fracture. Spine 28:2170–2175CrossRefGoogle Scholar
  15. 15.
    Nguyen H-V, Ludwig S, Gelb D (2003) Osteoporotic vertebral burst fractures with neurologic compromise. J Spinal Disord Tech 16:10–19CrossRefGoogle Scholar
  16. 16.
    Kashii M, Yamazaki R, Yamashita T et al (2013) Surgical treatment for osteoporotic vertebral collapse with neurological deficits: retrospective comparative study of three procedures—anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J 22:1633–1642CrossRefGoogle Scholar
  17. 17.
    Ito Y, Oda H, Taguchi T, Inoue H, Kawai S (2003) Results of surgical treatment for lumbar canal stenosis due to degenerative spondylolisthesis: enlargement of the lumbar spinal canal. J Orthop Sci 8:648–656CrossRefGoogle Scholar
  18. 18.
    Hirabayashi K, Miyakawa J, Satomi K et al (1981) Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 6:354–364CrossRefGoogle Scholar
  19. 19.
    Matsumoto T, Hoshino M, Tsujio T et al (2012) Prognostic factors for reduction of activities of daily living following osteoporotic vertebral fractures. Spine 37:1115–1121CrossRefGoogle Scholar
  20. 20.
    Peduzzi P, Concato J, Kemper E et al (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379CrossRefGoogle Scholar
  21. 21.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefGoogle Scholar
  22. 22.
    Ito Y, Hasegawa Y, Toda K et al (2002) Pathogenesis and diagnosis of delayed vertebral collapse resulting from osteoporotic spinal fracture. Spine J 2:101–106CrossRefGoogle Scholar
  23. 23.
    Kanayama M, Ishida T, Hashimoto T et al (2010) Role of major spine surgery using Kaneda anterior instrumentation for osteoporotic vertebral collapse. J Spinal Disord Tech 23:53–56CrossRefGoogle Scholar
  24. 24.
    Uchida K, Nakajima H, Yayama T et al (2010) Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. J Neurosurg Spine 13:612–621CrossRefGoogle Scholar
  25. 25.
    Sudo H, Ito M, Kaneda K et al (2013) Anterior decompression and strut graft versus posterior decompression and pedicle screw fixation with vertebroplasty for osteoporotic thoracolumbar vertebral collapse with neurologic deficits. Spine J 13:1726–1732CrossRefGoogle Scholar
  26. 26.
    Ito M, Harada A, Nakano T et al (2010) Retrospective multicenter study of surgical treatments for osteoporotic vertebral fractures. J Orthop Sci 15:289–293CrossRefGoogle Scholar
  27. 27.
    Kashii M, Yamazaki R, Yamashita T et al (2015) Factors affecting postoperative activities of daily living in patients with osteoporotic vertebral collapse with neurological deficits. J Bone Miner Metab 33:422–431CrossRefGoogle Scholar
  28. 28.
    Nakashima H, Imagama S, Yukawa Y et al (2015) Comparative study of 2 surgical procedures for osteoporotic delayed vertebral collapse: anterior and posterior combined surgery versus posterior spinal fusion with vertebroplasty. Spine 40:E120–E126CrossRefGoogle Scholar
  29. 29.
    Yasuda T, Kawaguchi Y, Suzuki K et al (2017) Five-year follow up results of posterior decompression and fixation surgery for delayed neural disorder associated with osteoporotic vertebral fracture. Medicine (Baltimore) 96:e9395CrossRefGoogle Scholar
  30. 30.
    Kashii M, Yamazaki R, Yamashita T et al (2013) Surgical treatment for osteoporotic vertebral collapse with neurological deficits: retrospective comparative study of three procedures—anterior surgery versus posterior spinal shorting osteotomy versus posterior spinal fusion using vertebroplasty. Eur Spine J 22:1633–1642CrossRefGoogle Scholar
  31. 31.
    Ciol MA, Deyo RA, Howell E et al (1996) An assessment of surgery for spinal stenosis: time trends, geographic variations, complications, and reoperations. J Am Geriatr Soc 44:285–290CrossRefGoogle Scholar
  32. 32.
    Nakashima H, Imagama S, Yukawa Y et al (2015) Comparative study of 2 surgical procedures for osteoporotic delayed vertebral collapse: anterior and posterior combined surgery versus posterior spinal fusion with vertebroplasty. Spine 40:E120–E126CrossRefGoogle Scholar
  33. 33.
    Lyles KW, Colón-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809CrossRefGoogle Scholar
  34. 34.
    Santini D, Martini F, Fratto ME et al (2009) In vivo effects of zoledronic acid on peripheral gammadelta T lymphocytes in early breast cancer patients. Cancer Immunol Immunother 58:31–38CrossRefGoogle Scholar
  35. 35.
    Carbone LD, Warrington KJ, Barrow KD et al (2006) Pamidronate infusion in patients with systemic sclerosis results in changes in blood mononuclear cell cytokine profiles. Clin Exp Immunol 146:371–380CrossRefGoogle Scholar
  36. 36.
    Colón-Emeric CS, Mesenbrink P, Lyles KW et al (2010) Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res 25:91–97CrossRefGoogle Scholar
  37. 37.
    Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441CrossRefGoogle Scholar
  38. 38.
    Compston JE (2007) Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone 40:1447–1452CrossRefGoogle Scholar
  39. 39.
    Dempster DW, Cosman F, Kurland ES et al (2001) Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 16:1846–1853CrossRefGoogle Scholar
  40. 40.
    Panico A, Lupoli GA, Marciello F, et al (2011) Teriparatide vs. alendronate as a treatment for osteoporosis: changes in biochemical markers of bone turnover, BMD and quality of life. Med Sci Monit 17:CR442-448Google Scholar
  41. 41.
    Ohtori S, Inoue G, Orita S et al (2012) Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine 37:E1464–E1468CrossRefGoogle Scholar
  42. 42.
    Ohtori S, Inoue G, Orita S et al (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine 38:E487–E492CrossRefGoogle Scholar
  43. 43.
    Ebata S, Takahashi J, Hasegawa T et al (2017) Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am 99:365–372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kazuma Murata
    • 1
    Email author
  • Yuji Matsuoka
    • 1
  • Hirosuke Nishimura
    • 1
  • Kenji Endo
    • 1
  • Hidekazu Suzuki
    • 1
  • Taichiro Takamatsu
    • 1
  • Yasunobu Sawaji
    • 1
  • Takato Aihara
    • 1
  • Takuya Kusakabe
    • 1
  • Asato Maekawa
    • 1
  • Kengo Yamamoto
    • 1
  • Kei Watanabe
    • 2
  • Takashi Kaito
    • 3
  • Hidetomi Terai
    • 4
  • Koji Tamai
    • 4
  • Atushi Tagami
    • 5
  • Toshitaka Yoshii
    • 6
  • Katsumi Harimaya
    • 7
  • Kenichi Kawaguchi
    • 7
  • Atsushi Kimura
    • 8
  • Gen Inoue
    • 9
  • Atsushi Nakano
    • 10
  • Daisuke Sakai
    • 11
  • Akihiko Hiyama
    • 11
  • Shota Ikegami
    • 12
  • Seiji Ohtori
    • 13
  • Takeo Furuya
    • 13
  • Sumihisa Orita
    • 13
  • Shiro Imagama
    • 14
  • Kazuyoshi Kobayashi
    • 14
  • Katsuhito Kiyasu
    • 15
  • Hideki Murakami
    • 16
  • Katsuhito Yoshioka
    • 16
  • Shoji Seki
    • 17
  • Michio Hongo
    • 18
  • Kenichiro Kakutani
    • 19
  • Takashi Yurube
    • 19
  • Yasuchika Aoki
    • 20
  • Hiroshi Uei
    • 21
  • Yasumitsu Ajiro
    • 21
  • Masahiko Takahata
    • 22
  • Hirooki Endo
    • 23
  • Tetsuya Abe
    • 24
  • Kazuyoshi Nakanishi
    • 25
  • Kota Watanabe
    • 26
  • Eijiro Okada
    • 26
  • Naobumi Hosogane
    • 27
  • Haruki Funao
    • 28
  • Norihiro Isogai
    • 28
  • Ken Ishii
    • 28
  1. 1.Department of Orthopedic SurgeryTokyo Medical UniversityShijjuku-kuJapan
  2. 2.Niigata UniversityNiigata-shiJapan
  3. 3.Osaka UniversitySuita-shiJapan
  4. 4.Osaka City UniversityAbeno-kuJapan
  5. 5.Nagasaki UniversityNagasaki-shiJapan
  6. 6.Tokyo Medical and Dental UniversityBunkyo-kuJapan
  7. 7.Kyusyu UniversityFukuoka-shiJapan
  8. 8.Jichi Medical UniversityShimotsuke-shiJapan
  9. 9.Kitasato UniversitySagamihara-shiJapan
  10. 10.Osaka Medical CollegeTskatsuki-shiJapan
  11. 11.Tokai UniversityIsehara-shiJapan
  12. 12.Shinshu UniversityMatsumoto-shiJapan
  13. 13.Chiba UniversityChiba-shiJapan
  14. 14.Nagoya UniversityNagoya-shiJapan
  15. 15.Kochi UniversityNankoku-shiJapan
  16. 16.Kanazawa UniversityKanazawa-shiJapan
  17. 17.University of ToyamaToyama-shiJapan
  18. 18.Akita UniversityAkita-shiJapan
  19. 19.Kobe UniversityKobe-shiJapan
  20. 20.Eastern Chiba Medical CenterTogane-shiJapan
  21. 21.Nihon UniversityItabashi-kuJapan
  22. 22.Hokkaido UniversitySapporo-shiJapan
  23. 23.Iwate Medical UniversityMorioka-shiJapan
  24. 24.University of TsukubaTsukuba-shiJapan
  25. 25.Hiroshima UniversityHiroshima CityJapan
  26. 26.Keio UniversityShinjuku-kuJapan
  27. 27.Kyorin UniversityMitaka-shiJapan
  28. 28.International University of Health and WelfareMinato-kuJapan

Personalised recommendations