Implementation of augmented reality support in spine surgery



To implement a straightforward workflow that allows to establish augmented reality (AR) support in spine surgery.


Intraoperative computed tomography (iCT) applying a 32-slice movable scanner was used for navigation registration in a series of 10 patients who underwent surgery for extra- or intradural spinal lesions. Preoperative multimodal image data were integrated by nonlinear registration with the iCT images. Automatic segmentation was used to delineate the 3-dimensional (3-D) outline of the vertebra, and in addition, the tumor extent, as well as implants, was segmented and visualized.


Automatic patient registration without user interaction resulted in high navigation accuracy with a mean registration error of only about 1 mm. Moreover, the workflow for establishing AR was straightforward and could be easily integrated in the normal surgical procedure. Low-dose iCT protocols resulted in a radiation exposure of 0.35–0.98 mSv for cervical, 2.16–6.92 mSv for thoracic, and 3.55–4.20 mSv for lumbar surgeries, which is a reduction in the effective radiation dose by 70%. The segmented structures were intuitively visualized in the surgical field using the heads-up display of the operating microscope. In parallel, the microscope video was superimposed with the segmented 3-D structures, which were visualized in a semitransparent manner along with various display modes of the image data.


A microscope-based AR environment was successfully implemented for spinal surgery. The application of iCT for registration imaging ensures high navigational accuracy. AR greatly supports the surgeon in understanding the 3-D anatomy thereby facilitating surgery.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Kelly PJ, Alker GJ Jr, Goerss S (1982) Computer-assisted stereotactic microsurgery for the treatment of intracranial neoplasms. Neurosurgery 10(3):324–331

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65(4):545–549.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Kiya N, Dureza C, Fukushima T, Maroon JC (1997) Computer navigational microscope for minimally invasive neurosurgery. Minim Invasive Neurosurg 40(3):110–115.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Nimsky C, Ganslandt O, Kober H, Moller M, Ulmer S, Tomandl B, Fahlbusch R (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44(6):1249–1255.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Barnett GH, Steiner CP, Weisenberger J (1995) Adaptation of personal projection television to a head-mounted display for intra-operative viewing of neuroimaging. J Image Guided Surg 1(2):109–112.;2-m

    Article  CAS  Google Scholar 

  6. 6.

    Masutani Y, Dohi T, Yamane F, Iseki H, Takakura K (1998) Augmented reality visualization system for intravascular neurosurgery. Comput Aided Surg 3(5):239–247.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Cabrilo I, Bijlenga P, Schaller K (2014) Augmented reality in the surgery of cerebral aneurysms: a technical report. Neurosurgery 10(Suppl 2):252–260. (discussion 260-251)

    Article  PubMed  Google Scholar 

  8. 8.

    Cabrilo I, Sarrafzadeh A, Bijlenga P, Landis BN, Schaller K (2014) Augmented reality-assisted skull base surgery. Neurochirurgie 60(6):304–306.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Carl B, Bopp M, Chehab S, Bien S, Nimsky C (2018) Preoperative 3-dimensional angiography data and intraoperative real-time vascular data integrated in microscope-based navigation by automatic patient registration applying intraoperative computed tomography. World Neurosurg 113:e414–e425.

    Article  PubMed  Google Scholar 

  10. 10.

    Abe Y, Sato S, Kato K, Hyakumachi T, Yanagibashi Y, Ito M, Abumi K (2013) A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine 19(4):492–501.

    Article  PubMed  Google Scholar 

  11. 11.

    Agten CA, Dennler C, Rosskopf AB, Jaberg L, Pfirrmann CWA, Farshad M (2018) Augmented reality-guided lumbar facet joint injections. Invest Radiol 53(8):495–498.

    Article  PubMed  Google Scholar 

  12. 12.

    Elmi-Terander A, Skulason H, Soderman M, Racadio J, Homan R, Babic D, van der Vaart N, Nachabe R (2016) Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine (Phila Pa 1976) 41(21):E1303–E1311.

    Article  Google Scholar 

  13. 13.

    Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H (2017) Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg 12(12):2205–2215.

    Article  PubMed  Google Scholar 

  14. 14.

    Kosterhon M, Gutenberg A, Kantelhardt SR, Archavlis E, Giese A (2017) Navigation and image injection for control of bone removal and osteotomy planes in spine surgery. Oper Neurosurg (Hagerstown) 13(2):297–304.

    Article  Google Scholar 

  15. 15.

    Carl B, Bopp M, Sass B, Nimsky C (2018) Intraoperative computed tomography as reliable navigation registration device in 200 cranial procedures. Acta Neurochir (Wien) 160(9):1681–1689.

    Article  Google Scholar 

  16. 16.

    Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248(3):995–1003.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Elbakri IA, Kirkpatrick ID (2013) Dose-length product to effective dose conversion factors for common computed tomography examinations based on Canadian clinical experience. Can Assoc Radiol J 64(1):15–17.

    Article  PubMed  Google Scholar 

  18. 18.

    Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl M (2017) Virtual reality-based simulators for spine surgery: a systematic review. Spine J 17(9):1352–1363.

    Article  PubMed  Google Scholar 

  19. 19.

    Vilar-Palop J, Vilar J, Hernandez-Aguado I, Gonzalez-Alvarez I, Lumbreras B (2016) Updated effective doses in radiology. J Radiol Prot 36(4):975–990.

    Article  PubMed  Google Scholar 

  20. 20.

    Greffier J, Pereira FR, Viala P, Macri F, Beregi JP, Larbi A (2017) Interventional spine procedures under CT guidance: how to reduce patient radiation dose without compromising the successful outcome of the procedure? Phys Med 35:88–96.

    Article  PubMed  Google Scholar 

  21. 21.

    Sarwahi V, Payares M, Wendolowski S, Maguire K, Thornhill B, Lo YT, Amaral TD (2017) Low-dose radiation 3D Intraoperative imaging how low can we go? An O-arm, CT scan, cadaveric study. Spine 42(22):E1311–E1317.

    Article  PubMed  Google Scholar 

  22. 22.

    Nagpal S, Abolmaesumi P, Rasoulian A, Hacihaliloglu I, Ungi T, Osborn J, Lessoway VA, Rudan J, Jaeger M, Rohling RN, Borschneck DP, Mousavi P (2015) A multi-vertebrae CT to US registration of the lumbar spine in clinical data. Int J Comput Assist Radiol Surg 10(9):1371–1381.

    Article  PubMed  Google Scholar 

  23. 23.

    Yoon JW, Chen RE, Kim EJ, Akinduro OO, Kerezoudis P, Han PK, Si P, Freeman WD, Diaz RJ, Komotar RJ, Pirris SM, Brown BL, Bydon M, Wang MY, Wharen RE Jr, Quinones-Hinojosa A (2018) Augmented reality for the surgeon: systematic review. Int J Med Robot 14(4):e1914.

    Article  PubMed  Google Scholar 

  24. 24.

    Hou Y, Ma L, Zhu R, Chen X, Zhang J (2016) A low-cost iPhone-assisted augmented reality solution for the localization of intracranial lesions. PLoS ONE 11(7):e0159185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Watanabe E, Satoh M, Konno T, Hirai M, Yamaguchi T (2016) The trans-visible navigator: a see-through neuronavigation system using augmented reality. World Neurosurg 87:399–405.

    Article  PubMed  Google Scholar 

Download references


We would like to thank J.-W. Bartsch for thoroughly proofreading the manuscript.

Author information



Corresponding author

Correspondence to Barbara Carl.

Ethics declarations

Conflict of interest

B Carl, M. Bopp, B. Saß and B. Voellger declare that they have no conflict of interest. Ch. Nimsky received speaker fees from Brainlab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 3023 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carl, B., Bopp, M., Saß, B. et al. Implementation of augmented reality support in spine surgery. Eur Spine J 28, 1697–1711 (2019).

Download citation


  • Augmented reality
  • Intraoperative computed tomography
  • Low-dose computed tomography
  • Navigation registration
  • Spine tumor surgery