Advertisement

European Spine Journal

, Volume 28, Issue 5, pp 914–921 | Cite as

ISSLS PRIZE IN CLINICAL SCIENCE 2019: clinical importance of trunk muscle mass for low back pain, spinal balance, and quality of life—a multicenter cross-sectional study

  • Yusuke Hori
  • Masatoshi HoshinoEmail author
  • Kazuhide Inage
  • Masayuki Miyagi
  • Shinji Takahashi
  • Shoichiro Ohyama
  • Akinobu Suzuki
  • Tadao Tsujio
  • Hidetomi Terai
  • Sho Dohzono
  • Ryuichi Sasaoka
  • Hiromitsu Toyoda
  • Minori Kato
  • Akira Matsumura
  • Takashi Namikawa
  • Masahiko Seki
  • Kentaro Yamada
  • Hasibullah Habibi
  • Hamidullah Salimi
  • Masaomi Yamashita
  • Tomonori Yamauchi
  • Takeo Furuya
  • Sumihisa Orita
  • Satoshi Maki
  • Yasuhiro Shiga
  • Masahiro Inoue
  • Gen Inoue
  • Hisako Fujimaki
  • Kosuke Murata
  • Ayumu Kawakubo
  • Daijiro Kabata
  • Ayumi Shintani
  • Seiji Ohtori
  • Masashi Takaso
  • Hiroaki Nakamura
Original Article

Abstract

Study design

A multicenter cross-sectional study.

Objectives

To clarify the relationship of trunk muscle mass with low back pain, spinal sagittal balance, and quality of life.

Summary of background data

Few reports have investigated the relationship of trunk muscle mass with lumbar spine function and spinal balance, and the clinical significance of trunk muscle mass remains unclear.

Methods

Patients attending spinal outpatient clinics at 10 different medical institutions were enrolled in this study. Patient demographics, trunk muscle mass and appendicular skeletal muscle mass (ASM) measured by bioelectrical impedance analysis (BIA), body mass index (BMI), Charlson Comorbidity Index (CCI), the Oswestry Disability Index (ODI), visual analog scale (VAS) for low back pain, sagittal vertical axis (SVA), and EuroQol 5 Dimension (EQ5D) score were investigated. Multivariate nonlinear regression analysis was used to investigate the association of trunk muscle mass with the ODI, VAS score, SVA, and EQ5D score.

Results

Of 2551 eligible patients, 1738 (mean age 70.2 ± 11.0 years; 781 men and 957 women) were enrolled. Trunk muscle mass was significantly correlated with the ODI, VAS score, SVA, and EQ5D score (P < 0.001) when adjusted for age, sex, BMI, ASM, CCI, and history of lumbar surgery. Patient deterioration was associated with a decrease in trunk muscle mass, and the deterioration accelerated from approximately 23 kg.

Conclusions

Trunk muscle mass was significantly associated with the ODI, VAS score, SVA, and EQ5D score. Trunk muscle mass may assume an important role to elucidate and treat lumbar spinal dysfunction and spinal imbalance.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Lumbar spine Low back pain Trunk muscles Kyphosis Sarcopenia 

Notes

Acknowledgements

The authors thank Satomi Kawabata, Yoshika Notani, Yuka Tatsumi, and Aiko Nakashima for their help in collecting the data and conducting interviews with the patients.

Funding

This work was financially supported by the Japanese Orthopaedic Association Research Grant.

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no competing interests; each author certifies that no commercial relationships exist that might pose a conflict of interest in connection with this article.

Ethical approval

This study was approved by the local ethics committee of the Faculty of Medicine, Osaka City University (number 3806).

Supplementary material

586_2019_5904_MOESM1_ESM.pptx (177 kb)
Supplementary material 1 (PPTX 176 kb)

References

  1. 1.
    Ministry of Health, Labour and Welfare. Overview of vital statistics in 2017. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei17/index.html. Accessed 14 Oct 2018
  2. 2.
    Vos T, Allen C, Arora M et al (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602.  https://doi.org/10.1016/S0140-6736(16)31678-6 CrossRefGoogle Scholar
  3. 3.
    Hurwitz EL, Randhawa K, Yu H et al (2018) The Global Spine Care Initiative: a summary of the global burden of low back and neck pain studies. Eur Spine J.  https://doi.org/10.1007/s00586-017-5432-9 Google Scholar
  4. 4.
    Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029CrossRefGoogle Scholar
  5. 5.
    Hassanzadeh H, Jain A, El Dafrawy MH et al (2013) Three-column osteotomies in the treatment of spinal deformity in adult patients 60 years old and older: outcome and complications. Spine (Phila Pa 1976) 38:726–731.  https://doi.org/10.1097/BRS.0b013e31827c2415 CrossRefGoogle Scholar
  6. 6.
    Bhagat S, Vozar V, Lutchman L et al (2013) Morbidity and mortality in adult spinal deformity surgery: Norwich Spinal Unit experience. Eur Spine J 22:42–46.  https://doi.org/10.1007/s00586-012-2627-y CrossRefGoogle Scholar
  7. 7.
    Soroceanu A, Burton DC, Oren JH et al (2016) Medical complications after adult spinal deformity surgery incidence, risk factors, and clinical impact. Spine (Phila Pa 1976) 41:1718–1723.  https://doi.org/10.1097/BRS.0000000000001636 CrossRefGoogle Scholar
  8. 8.
    Yagi M, Hosogane N, Watanabe K et al (2015) The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J 16:451–458.  https://doi.org/10.1016/j.spinee.2015.07.001 CrossRefGoogle Scholar
  9. 9.
    Hebert JJ, Kjaer P, Fritz JM, Walker BF (2014) The Relationship of lumbar multifidus muscle morphology to previous, current, and future low back pain. Spine (Phila Pa 1976) 39:1417–1425.  https://doi.org/10.1097/BRS.0000000000000424 CrossRefGoogle Scholar
  10. 10.
    Shahidi B, Parra CL, Berry DB et al (2017) Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine (Phila Pa 1976) 42:616–623.  https://doi.org/10.1097/BRS.0000000000001848 CrossRefGoogle Scholar
  11. 11.
    Hyun S-J, Bae C-W, Lee S-H, Rhim S-C (2013) Fatty Degeneration of Paraspinal Muscle in Patients With the Degenerative Lumbar Kyphosis. J Spinal Disord Tech 29:1.  https://doi.org/10.1097/BSD.0b013e3182aa28b0 Google Scholar
  12. 12.
    Menezes-Reis R, Bonugli GP, Salmon CEG et al (2018) Relationship of spinal alignment with muscular volume and fat infiltration of lumbar trunk muscles. PLoS ONE 13:1–16.  https://doi.org/10.1371/journal.pone.0200198 CrossRefGoogle Scholar
  13. 13.
    Jun HS, Kim JH, Ahn JH et al (2016) The effect of lumbar spinal muscle on spinal sagittal alignment: evaluating muscle quantity and quality. Neurosurgery 79:847–855.  https://doi.org/10.1227/NEU.0000000000001269 CrossRefGoogle Scholar
  14. 14.
    Teichtahl AJ, Urquhart DM, Wang Y et al (2015) Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J 15:1593–1601.  https://doi.org/10.1016/J.SPINEE.2015.03.039 CrossRefGoogle Scholar
  15. 15.
    Danneels LA, Vanderstraeten GG, Cambier DC et al (2000) CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 9:266–272.  https://doi.org/10.1007/s005860000190 CrossRefGoogle Scholar
  16. 16.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896.  https://doi.org/10.1046/j.1532-5415.2002.50216.x CrossRefGoogle Scholar
  17. 17.
    Yoshida D, Shimada H, Park H et al (2014) Development of an equation for estimating appendicular skeletal muscle mass in Japanese older adults using bioelectrical impedance analysis. Geriatr Gerontol Int 14:851–857.  https://doi.org/10.1111/ggi.12177 CrossRefGoogle Scholar
  18. 18.
    Kim M, Shinkai S, Murayama H, Mori S (2015) Comparison of segmental multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body composition in a community-dwelling older population. Geriatr Gerontol Int 15:1013–1022.  https://doi.org/10.1111/ggi.12384 CrossRefGoogle Scholar
  19. 19.
    Fujimoto K, Inage K, Eguchi Y et al (2018) Use of bioelectrical impedance analysis for the measurement of appendicular skeletal muscle mass/whole fat mass and its relevance in assessing osteoporosis among patients with low back pain: a comparative analysis using dual X-ray absorptiometry. Asian Spine J 12:839–845.  https://doi.org/10.31616/asj.2018.12.5.839 CrossRefGoogle Scholar
  20. 20.
    Chen LK, Liu LK, Woo J et al (2014) Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc 15:95–101.  https://doi.org/10.1016/j.jamda.2013.11.025 CrossRefGoogle Scholar
  21. 21.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis. Age Ageing 39:412–423.  https://doi.org/10.1093/ageing/afq034 CrossRefGoogle Scholar
  22. 22.
    Shimokata H, Ando F, Yuki A, Otsuka R (2014) Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int 14(Suppl 1):85–92.  https://doi.org/10.1111/ggi.12219 CrossRefGoogle Scholar
  23. 23.
    Doherty TJ (2003) Invited review: aging and sarcopenia. J Appl Physiol 95:1717–1727.  https://doi.org/10.1152/japplphysiol.00347.2003 CrossRefGoogle Scholar
  24. 24.
    Park S, Kim HJ, Ko BG et al (2016) The prevalence and impact of sarcopenia on degenerative lumbar spinal stenosis. Bone Joint J 98-B:1093–1098CrossRefGoogle Scholar
  25. 25.
    Tanishima S, Hagino H, Matsumoto H et al (2017) Association between sarcopenia and low back pain in local residents prospective cohort study from the GAINA study. BMC Musculoskelet Disord 18:1–6.  https://doi.org/10.1186/s12891-017-1807-7 CrossRefGoogle Scholar
  26. 26.
    Shahtahmassebi B, Hebert JJ, Hecimovich MD, Fairchild TJ (2017) Associations between trunk muscle morphology, strength and function in older adults. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-11116-0 CrossRefGoogle Scholar
  27. 27.
    Kjaer P, Bendix T, Sorensen JS et al (2007) Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med 5:2.  https://doi.org/10.1186/1741-7015-5-2 CrossRefGoogle Scholar
  28. 28.
    Kado DM, Huang MH, Karlamangla AS et al (2013) Factors associated with kyphosis progression in older women: 15 years’ experience in the study of osteoporotic fractures. J Bone Miner Res 28:179–187.  https://doi.org/10.1002/jbmr.1728 CrossRefGoogle Scholar
  29. 29.
    Yamamoto J, Bergstrom J, Davis A et al (2017) Trunk lean mass and its association with 4 different measures of thoracic kyphosis in older community dwelling persons. PLoS ONE 12:1–10.  https://doi.org/10.1371/journal.pone.0174710 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yusuke Hori
    • 1
  • Masatoshi Hoshino
    • 1
    Email author
  • Kazuhide Inage
    • 2
  • Masayuki Miyagi
    • 3
  • Shinji Takahashi
    • 1
  • Shoichiro Ohyama
    • 1
  • Akinobu Suzuki
    • 1
  • Tadao Tsujio
    • 4
  • Hidetomi Terai
    • 1
  • Sho Dohzono
    • 5
  • Ryuichi Sasaoka
    • 5
  • Hiromitsu Toyoda
    • 1
  • Minori Kato
    • 6
  • Akira Matsumura
    • 6
  • Takashi Namikawa
    • 6
  • Masahiko Seki
    • 4
  • Kentaro Yamada
    • 1
  • Hasibullah Habibi
    • 1
  • Hamidullah Salimi
    • 1
  • Masaomi Yamashita
    • 7
  • Tomonori Yamauchi
    • 8
  • Takeo Furuya
    • 2
  • Sumihisa Orita
    • 2
  • Satoshi Maki
    • 2
  • Yasuhiro Shiga
    • 2
  • Masahiro Inoue
    • 2
  • Gen Inoue
    • 3
  • Hisako Fujimaki
    • 3
  • Kosuke Murata
    • 3
  • Ayumu Kawakubo
    • 3
  • Daijiro Kabata
    • 9
  • Ayumi Shintani
    • 9
  • Seiji Ohtori
    • 2
  • Masashi Takaso
    • 3
  • Hiroaki Nakamura
    • 1
  1. 1.Department of Orthopaedic SurgeryOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Department of Orthopaedic Surgery, Graduate School of MedicineChiba UniversityChibaJapan
  3. 3.Department of Orthopaedic SurgeryKitasato University, School of MedicineKanagawaJapan
  4. 4.Department of Orthopaedic SurgeryShiraniwa HospitalNaraJapan
  5. 5.Department of Orthopaedic SurgeryYodogawa Christian HospitalOsakaJapan
  6. 6.Department of Orthopaedic SurgeryOsaka City General HospitalOsakaJapan
  7. 7.Department of Orthopedic SurgeryJCHO Funabashi Central HospitalChibaJapan
  8. 8.Department of Orthopedic SurgeryAsahi General HospitalChibaJapan
  9. 9.Department of Medical StatisticsOsaka City University Graduate School of MedicineOsakaJapan

Personalised recommendations