Skip to main content
Log in

Endplate lesions in the lumbar spine: a novel MRI-based classification scheme and epidemiology in low back pain patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The aims of the study were to introduce a classification scheme for endplate lesions based on T2-weighted magnetic resonance imaging and to detect possible associations between endplate lesions and other variables such as age, sex, disc degeneration and Modic changes in a large population.

Methods

MRI images of 996 low back pain patients were collected. All intervertebral spaces were classified as “normal”, “wavy/irregular”, “notched”, “Schmorl’s node” and “fracture”. The associations between endplate lesions and age, sex, disc degeneration and Modic changes were determined in the considered population.

Results

The most common endplate lesions were “notched” and “Schmorl’s nodes”. The prevalence was higher among the male subjects. In most patients (62.8%), no endplate lesions were detected, with a significant difference between male (57.5%) and female subjects (67.9%) (p < 0.001). Lesions were found to be associated with intervertebral disc degeneration (relative risk 2.49) and signal alterations (relative risk 3.08). Fleiss kappas of 0.73 and 0.89 were, respectively, assessed for the inter- and intra-observer reliabilities of the new classification system.

Conclusions

Endplate lesions were detected, classified with a novel scheme and analysed in a large population of patients suffering from low back pain based on MRI images. The reliability of the novel classification system was demonstrated.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmorl G (1927) Über die an den Wirbelbandscheiben vorkommenden Ausdehnungs- und Zerreissungsvorgänge und die dadurch an ihnen und der Wirbelspongiosa hervorgerufenen Veränderungen. Verhandlungen Dtsch Ges Für Pathol 22:250–262

    Google Scholar 

  2. Schmorl G, Junghanns H (1971) The human spine in health and disease. Grune and Stratton, New York

    Google Scholar 

  3. Putschar W (1927) Zur Kenntnis der Knorpelinseln in den Wirbelkörpern. Beitr Path Anat 79:150

    Google Scholar 

  4. Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine: an experimental biomechanical investigation. Acta Orthop Scand 28(sup25):1–101

    Article  Google Scholar 

  5. Kyere KA, Than KD, Wang AC, Rahman SU, Valdivia-Valdivia JM, La Marca F, Park P (2012) Schmorl’s nodes. Eur Spine J 21(11):2115–2121

    Article  Google Scholar 

  6. Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology: part III. Pathological changes in the intervertebral disc. J Bone Joint Surg 27(3):460–474

    Google Scholar 

  7. Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35(2):127–132

    Article  CAS  Google Scholar 

  8. Zhang N, Li F, Huang Y, Teng C, Chen W (2010) Possible key role of immune system in Schmorl’s nodes. Med Hypotheses 74(3):552–554

    Article  CAS  Google Scholar 

  9. Pfirrmann CW, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic–pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219(2):368–374

    Article  CAS  Google Scholar 

  10. Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35(21):1944–1952

    Article  Google Scholar 

  11. Hamanishi C, Kawabata T, Yosii T, Tanaka S (1994) Schmorl’s nodes on magnetic resonance imaging: their incidence and clinical relevance. Spine 19(4):450–453

    Article  CAS  Google Scholar 

  12. McCall IW, Park WM, O’Brien JP, Seal V (1985) Acute traumatic intraosseous disc herniation. Spine 10(2):134–137

    Article  CAS  Google Scholar 

  13. Hsu KY, Zucherman JF, Derby R, White AH, Goldthwaite N, Wynne G (1988) Painful lumbar end-plate disruptions: a significant discographic finding. Spine 13(1):76–78

    Article  CAS  Google Scholar 

  14. Williams F, Manek N, Sambrook P, Spector T, Macgregor A (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Care Res 57(5):855–860

    Article  CAS  Google Scholar 

  15. Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X (2009) Diagnosis and surgical treatment of back pain originating from endplate. Eur Spine J 18(7):1035–1040

    Article  Google Scholar 

  16. Hasegawa K, Ogose A, Morita T, Hirata Y (2004) Painful Schmorl’s node treated by lumbar interbody fusion. Spinal Cord 42(2):124–128

    Article  CAS  Google Scholar 

  17. Wenger M, Markwalder T (2009) Fluoronavigation-assisted, lumbar vertebroplasty for a painful Schmorl node. J Clin Neurosci 16(9):1250–1251

    Article  Google Scholar 

  18. Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37(17):1432–1439

    Article  Google Scholar 

  19. Saluja G, Fitzpatrick K, Bruce M, Cross J (1986) Schmorl’s nodes (intravertebral herniations of intervertebral disc tissue) in two historic British populations. J Anat 145:87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Y, Videman T, Battie MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37(17):1490–1496

    Article  Google Scholar 

  21. Weiner BK, Vilendecic M, Ledic D, Eustacchio S, Varga P, Gorensek M, Fernandez-Moure J, Hipp JA (2015) Endplate changes following discectomy: natural history and associations between imaging and clinical data. Eur Spine J 24(11):2449–2457

    Article  Google Scholar 

  22. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643

    Article  CAS  Google Scholar 

  23. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168(1):177–186

    Article  CAS  Google Scholar 

  24. Farshad-Amacker NA, Hughes A, Herzog RJ, Seifert B, Farshad M (2017) The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 27(6):2507–2520

    Article  Google Scholar 

  25. Samartzis D, Mok F, Karppinen J, Fong D, Luk K, Cheung K (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthritis Cartilage 24(10):1753–1760

    Article  CAS  Google Scholar 

  26. DeLucca JF, Peloquin JM, Smith LJ, Wright AC, Vresilovic EJ, Elliott DM (2016) MRI quantification of human spine cartilage endplate geometry: comparison with age, degeneration, level, and disc geometry. J Orthop Res 34(8):1410–1417

    Article  Google Scholar 

  27. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878

    Article  CAS  Google Scholar 

  28. de Hooge M, de Bruin F, de Beer L, Bakker P, van den Berg R, Ramiro S, van Gaalen F, Fagerli K, Landewé R, van Oosterhout M, Ramonda R, Huizinga T, Bloem H, Reijnierse M, van der Heijde D (2017) Is the site of back pain related to the location of magnetic resonance imaging lesions in patients with chronic back pain? Results from the Spondyloarthritis Caught Early cohort. Arthritis Care Res 69(5):717–723

    Article  Google Scholar 

  29. Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R (2003) ISSLS prize winner: the innervation of the intervertebral disc: a quantitative analysis. Spine (Phila Pa 1976) 28(23):2570–2576

    Article  Google Scholar 

  30. Ashton I, Roberts S, Jaffray D, Polak J, Eisenstein S (1994) Neuropeptides in the human intervertebral disc. J Orthop Res 12(2):186–192

    Article  CAS  Google Scholar 

  31. Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79(1):147–153

    Article  CAS  Google Scholar 

  32. Zehra U, Flower L, Robson-Brown K, Adams MA, Dolan P (2017) Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 17(5):727–737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Galbusera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Written informed consent for the use of the data for research purposes was obtained and double anonymization of patients’ data was performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brayda-Bruno, M., Albano, D., Cannella, G. et al. Endplate lesions in the lumbar spine: a novel MRI-based classification scheme and epidemiology in low back pain patients. Eur Spine J 27, 2854–2861 (2018). https://doi.org/10.1007/s00586-018-5787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5787-6

Keywords

Navigation