European Spine Journal

, Volume 27, Issue 11, pp 2854–2861 | Cite as

Endplate lesions in the lumbar spine: a novel MRI-based classification scheme and epidemiology in low back pain patients

  • Marco Brayda-Bruno
  • Domenico Albano
  • Guglielmo Cannella
  • Fabio GalbuseraEmail author
  • Alberto Zerbi
Original Article



The aims of the study were to introduce a classification scheme for endplate lesions based on T2-weighted magnetic resonance imaging and to detect possible associations between endplate lesions and other variables such as age, sex, disc degeneration and Modic changes in a large population.


MRI images of 996 low back pain patients were collected. All intervertebral spaces were classified as “normal”, “wavy/irregular”, “notched”, “Schmorl’s node” and “fracture”. The associations between endplate lesions and age, sex, disc degeneration and Modic changes were determined in the considered population.


The most common endplate lesions were “notched” and “Schmorl’s nodes”. The prevalence was higher among the male subjects. In most patients (62.8%), no endplate lesions were detected, with a significant difference between male (57.5%) and female subjects (67.9%) (p < 0.001). Lesions were found to be associated with intervertebral disc degeneration (relative risk 2.49) and signal alterations (relative risk 3.08). Fleiss kappas of 0.73 and 0.89 were, respectively, assessed for the inter- and intra-observer reliabilities of the new classification system.


Endplate lesions were detected, classified with a novel scheme and analysed in a large population of patients suffering from low back pain based on MRI images. The reliability of the novel classification system was demonstrated.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Endplate lesions Endplate defects Pfirrmann grading Modic changes Classification system 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Written informed consent for the use of the data for research purposes was obtained and double anonymization of patients’ data was performed.

Supplementary material

586_2018_5787_MOESM1_ESM.pptx (656 kb)
Supplementary material 1 (PPTX 656 kb)


  1. 1.
    Schmorl G (1927) Über die an den Wirbelbandscheiben vorkommenden Ausdehnungs- und Zerreissungsvorgänge und die dadurch an ihnen und der Wirbelspongiosa hervorgerufenen Veränderungen. Verhandlungen Dtsch Ges Für Pathol 22:250–262Google Scholar
  2. 2.
    Schmorl G, Junghanns H (1971) The human spine in health and disease. Grune and Stratton, New YorkGoogle Scholar
  3. 3.
    Putschar W (1927) Zur Kenntnis der Knorpelinseln in den Wirbelkörpern. Beitr Path Anat 79:150Google Scholar
  4. 4.
    Perey O (1957) Fracture of the vertebral end-plate in the lumbar spine: an experimental biomechanical investigation. Acta Orthop Scand 28(sup25):1–101CrossRefGoogle Scholar
  5. 5.
    Kyere KA, Than KD, Wang AC, Rahman SU, Valdivia-Valdivia JM, La Marca F, Park P (2012) Schmorl’s nodes. Eur Spine J 21(11):2115–2121CrossRefGoogle Scholar
  6. 6.
    Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: its microscopic anatomy and pathology: part III. Pathological changes in the intervertebral disc. J Bone Joint Surg 27(3):460–474Google Scholar
  7. 7.
    Hilton RC, Ball J, Benn RT (1976) Vertebral end-plate lesions (Schmorl’s nodes) in the dorsolumbar spine. Ann Rheum Dis 35(2):127–132CrossRefGoogle Scholar
  8. 8.
    Zhang N, Li F, Huang Y, Teng C, Chen W (2010) Possible key role of immune system in Schmorl’s nodes. Med Hypotheses 74(3):552–554CrossRefGoogle Scholar
  9. 9.
    Pfirrmann CW, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic–pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219(2):368–374CrossRefGoogle Scholar
  10. 10.
    Mok FP, Samartzis D, Karppinen J, Luk KD, Fong DY, Cheung KM (2010) ISSLS prize winner: prevalence, determinants, and association of Schmorl nodes of the lumbar spine with disc degeneration: a population-based study of 2449 individuals. Spine (Phila Pa 1976) 35(21):1944–1952CrossRefGoogle Scholar
  11. 11.
    Hamanishi C, Kawabata T, Yosii T, Tanaka S (1994) Schmorl’s nodes on magnetic resonance imaging: their incidence and clinical relevance. Spine 19(4):450–453CrossRefGoogle Scholar
  12. 12.
    McCall IW, Park WM, O’Brien JP, Seal V (1985) Acute traumatic intraosseous disc herniation. Spine 10(2):134–137CrossRefGoogle Scholar
  13. 13.
    Hsu KY, Zucherman JF, Derby R, White AH, Goldthwaite N, Wynne G (1988) Painful lumbar end-plate disruptions: a significant discographic finding. Spine 13(1):76–78CrossRefGoogle Scholar
  14. 14.
    Williams F, Manek N, Sambrook P, Spector T, Macgregor A (2007) Schmorl’s nodes: common, highly heritable, and related to lumbar disc disease. Arthritis Care Res 57(5):855–860CrossRefGoogle Scholar
  15. 15.
    Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X (2009) Diagnosis and surgical treatment of back pain originating from endplate. Eur Spine J 18(7):1035–1040CrossRefGoogle Scholar
  16. 16.
    Hasegawa K, Ogose A, Morita T, Hirata Y (2004) Painful Schmorl’s node treated by lumbar interbody fusion. Spinal Cord 42(2):124–128CrossRefGoogle Scholar
  17. 17.
    Wenger M, Markwalder T (2009) Fluoronavigation-assisted, lumbar vertebroplasty for a painful Schmorl node. J Clin Neurosci 16(9):1250–1251CrossRefGoogle Scholar
  18. 18.
    Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37(17):1432–1439CrossRefGoogle Scholar
  19. 19.
    Saluja G, Fitzpatrick K, Bruce M, Cross J (1986) Schmorl’s nodes (intravertebral herniations of intervertebral disc tissue) in two historic British populations. J Anat 145:87–96PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang Y, Videman T, Battie MC (2012) ISSLS prize winner: lumbar vertebral endplate lesions: associations with disc degeneration and back pain history. Spine (Phila Pa 1976) 37(17):1490–1496CrossRefGoogle Scholar
  21. 21.
    Weiner BK, Vilendecic M, Ledic D, Eustacchio S, Varga P, Gorensek M, Fernandez-Moure J, Hipp JA (2015) Endplate changes following discectomy: natural history and associations between imaging and clinical data. Eur Spine J 24(11):2449–2457CrossRefGoogle Scholar
  22. 22.
    Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17(5):626–643CrossRefGoogle Scholar
  23. 23.
    Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168(1):177–186CrossRefGoogle Scholar
  24. 24.
    Farshad-Amacker NA, Hughes A, Herzog RJ, Seifert B, Farshad M (2017) The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 27(6):2507–2520CrossRefGoogle Scholar
  25. 25.
    Samartzis D, Mok F, Karppinen J, Fong D, Luk K, Cheung K (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthritis Cartilage 24(10):1753–1760CrossRefGoogle Scholar
  26. 26.
    DeLucca JF, Peloquin JM, Smith LJ, Wright AC, Vresilovic EJ, Elliott DM (2016) MRI quantification of human spine cartilage endplate geometry: comparison with age, degeneration, level, and disc geometry. J Orthop Res 34(8):1410–1417CrossRefGoogle Scholar
  27. 27.
    Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26(17):1873–1878CrossRefGoogle Scholar
  28. 28.
    de Hooge M, de Bruin F, de Beer L, Bakker P, van den Berg R, Ramiro S, van Gaalen F, Fagerli K, Landewé R, van Oosterhout M, Ramonda R, Huizinga T, Bloem H, Reijnierse M, van der Heijde D (2017) Is the site of back pain related to the location of magnetic resonance imaging lesions in patients with chronic back pain? Results from the Spondyloarthritis Caught Early cohort. Arthritis Care Res 69(5):717–723CrossRefGoogle Scholar
  29. 29.
    Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R (2003) ISSLS prize winner: the innervation of the intervertebral disc: a quantitative analysis. Spine (Phila Pa 1976) 28(23):2570–2576CrossRefGoogle Scholar
  30. 30.
    Ashton I, Roberts S, Jaffray D, Polak J, Eisenstein S (1994) Neuropeptides in the human intervertebral disc. J Orthop Res 12(2):186–192CrossRefGoogle Scholar
  31. 31.
    Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79(1):147–153CrossRefGoogle Scholar
  32. 32.
    Zehra U, Flower L, Robson-Brown K, Adams MA, Dolan P (2017) Defects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 17(5):727–737CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Spine Surgery IIIIRCCS Istituto Ortopedico GaleazziMilanItaly
  2. 2.Unit of Diagnostic and Interventional RadiologyIRCCS Istituto Ortopedico GaleazziMilanItaly
  3. 3.Laboratory of Biological Structures MechanicsIRCCS Istituto Ortopedico GaleazziMilanItaly

Personalised recommendations