CT for thoracic and lumbar spine fractures: Can CT findings accurately predict posterior ligament complex injury?

Abstract

Purpose

This study aims to determine whether secondary CT findings can predict posterior ligament complex (PLC) injury in patients with acute thoracic (T) or lumbar (L) spine fractures.

Methods

This is a retrospective study of 105 patients with acute thoracic and lumbar spine fractures on CT, with MRI as the reference standard for PLC injury. Three readers graded CT for facet joint alignment (FJA), widening (FJW), pedicle or lamina fracture (PLF), spinous fracture (SPF), interspinous widening (ISW), vertebral translation (VBT), and posterior endplate fracture (PEF). Univariate and multivariate logistic regression analyses were performed separately for each reader to test for associations between CT and PLC injury, and diagnostic performance of CT was calculated.

Results

Fifty-three of 105 patients had PLC injury by MRI. Statistically significant predictors of PLC injury were VBT, PLF, ISW, and SPF. Using these four CT findings, odds of PLC injury ranged from 3.8 to 5.6 for one positive finding, but increased to 13.6–25.1 for two or more. At least one positive CT finding was found to yield average sensitivity of 82% and specificity 59%, while two or more yielded sensitivity 46% and specificity 88%.

Conclusion

While no individual CT finding is sufficiently accurate to diagnose or exclude PLC injury, greater the number of positive CT findings (VBT, PLF, ISW, and SPF), the higher the odds of PLC injury. The presence of a single abnormal CT finding may warrant confirmatory MRI for PLC injury, while two or more CT findings may have adequate specificity to avoid need for MRI prior to surgical intervention.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Pizones J, Castillo E (2013) Assessment of acute thoracolumbar fractures: challenges in multidetector computed tomography and added value of emergency MRI. Semin Musculoskelet Radiol 17(4):389–395. https://doi.org/10.1055/s-0033-1356468

    Article  PubMed  Google Scholar 

  2. 2.

    Pizones J, Izquierdo E, Álvarez P et al (2011) Impact of magnetic resonance imaging on decision making for thoracolumbar traumatic fracture diagnosis and treatment. Eur Spine J 20:390–396

    Article  Google Scholar 

  3. 3.

    Vaccaro AR, Lehman RA Jr, Hurlbert RJ et al (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30(20):2325

    Article  Google Scholar 

  4. 4.

    Khurana B, Sheehan SE, Sodickson A, Bono CM, Harris MB (2013) Traumatic thoracolumbar spine injuries: what the spine surgeon wants to know. Radiogr Rev Publ Radiol Soc N Am Inc 33(7):2031–2046. https://doi.org/10.1148/rg.337135018

    Article  Google Scholar 

  5. 5.

    Radcliff K, Kepler CK, Rubin TA et al (2012) Does the load-sharing classification predict ligamentous injury, neurological injury, and the need for surgery in patients with thoracolumbar burst fractures? J Neurosurg Spine 16(6):534–538

    Article  Google Scholar 

  6. 6.

    Oner FC, van Gils APG, Faber JAJ, Dhert WJA, Verbout AJ (2002) Some complications of common treatment schemes of horacolumbar spine fractures can be predicted with magnetic resonance imaging: prospective study of 53 patients with 71 fractures. Spine 27(6):629–636

    CAS  Article  Google Scholar 

  7. 7.

    Radcliff K, Su BW, Kepler CK et al (2012) Correlation of posterior ligamentous complex injury and neurological injury to loss of vertebral body height, kyphosis, and canal compromise. Spine 37(13):1142–1150

    Article  Google Scholar 

  8. 8.

    Winklhofer S, Thekkumthala-Sommer M, Schmidt D et al (2013) Magnetic resonance imaging frequently changes classification of acute traumatic thoracolumbar spine injuries. Skeletal Radiol 42(6):779–786. https://doi.org/10.1007/s00256-012-1551-x

    Article  PubMed  Google Scholar 

  9. 9.

    Lee JY, Vaccaro AR, Schweitzer KM et al (2007) Assessment of injury to the thoracolumbar posterior ligamentous complex in the setting of normal-appearing plain radiography. Spine J 7(4):422–427

    Article  Google Scholar 

  10. 10.

    Looby S, Flanders A (2012) MRI of spinal cord injury. Contemp Diagn Radiol 35(1):1

    Article  Google Scholar 

  11. 11.

    Vaccaro AR, Lee JY, Schweitzer KM et al (2006) Assessment of injury to the posterior ligamentous complex in thoracolumbar spine trauma. Spine J 6(5):524–528

    Article  Google Scholar 

  12. 12.

    Lee HM, Kim HS, Kim DJ, Suk KS, Park JO, Kim NH (2000) Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine 25(16):2079–2084

    CAS  Article  Google Scholar 

  13. 13.

    Bagley LJ (2006) Imaging of spinal trauma. Radiol Clin North Am 44(1):1–12

    Article  Google Scholar 

  14. 14.

    Terk MR, Hume-Neal M, Fraipont M, Ahmadi J, Colletti PM (1997) Injury of the posterior ligament complex in patients with acute spinal trauma: evaluation by MR imaging. AJR Am J Roentgenol 168(6):1481–1486. https://doi.org/10.2214/ajr.168.6.9168711

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Bozzo A, Marcoux J, Radhakrishna M, Pelletier J, Goulet B (2011) The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 28(8):1401–1411

    Article  Google Scholar 

  16. 16.

    Rihn JA, Yang N, Fisher C et al (2010) Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine 12(4):391–396

    Article  Google Scholar 

  17. 17.

    Vaccaro AR, Rihn JA, Saravanja D et al (2009) Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine 34(23):E841–E847. https://doi.org/10.1097/BRS.0b013e3181bd11be

    Article  PubMed  Google Scholar 

  18. 18.

    Salgado A, Pizones J, Sánchez-Mariscal F, Alvarez P, Zúñiga L, Izquierdo E (2013) MRI reliability in classifying thoracolumbar fractures according to AO classification. Orthopedics 36(1):e75–e78. https://doi.org/10.3928/01477447-20121217-22

    Article  PubMed  Google Scholar 

  19. 19.

    Mirvis SE, Geisler FH, Jelinek JJ, Joslyn JN, Gellad F (1988) Acute cervical spine trauma: evaluation with 1.5-T MR imaging. Radiology 166(3):807–816. https://doi.org/10.1148/radiology.166.3.3277249

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Jackson ER, Lador R, Ben-Galim PJ, Reitman CA, Hipp JA (2011) Reference data for interpreting widening between spinous processes in the lumbar spine. Spine J Off J North Am Spine Soc 11(4):336–339. https://doi.org/10.1016/j.spinee.2011.02.005

    Article  Google Scholar 

  21. 21.

    Hiyama A, Watanabe M, Katoh H, Sato M, Nagai T, Mochida J (2015) Relationships between posterior ligamentous complex injury and radiographic parameters in patients with thoracolumbar burst fractures. Injury 46(2):392–398. https://doi.org/10.1016/j.injury.2014.10.047

    Article  PubMed  Google Scholar 

  22. 22.

    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201

    CAS  Article  Google Scholar 

  23. 23.

    Joaquim AF, Fernandes YB, Cavalcante RAC, Fragoso RM, Honorato DC, Patel AA (2011) Evaluation of the thoracolumbar injury classification system in thoracic and lumbar spinal trauma. Spine 36(1):33

    Article  Google Scholar 

  24. 24.

    van Middendorp JJ, Patel AA, Schuetz M, Joaquim AF (2012) The precision, accuracy and validity of detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. https://doi.org/10.1007/s00586-012-2602-7

    Article  Google Scholar 

  25. 25.

    Pizones J, Zúñiga L, Sánchez-Mariscal F, Álvarez P, Gómez-Rice A, Izquierdo E (2012) MRI study of post-traumatic incompetence of posterior ligamentous complex: importance of the supraspinous ligament. Prospective study of 74 traumatic fractures. Eur Spine J 21(11):2222–2231

    Article  Google Scholar 

  26. 26.

    Pizones J, Izquierdo E, Sánchez-Mariscal F, Zúñiga L, Álvarez P, Gómez-Rice A (2012) Sequential damage assessment of the different components of the posterior ligamentous complex after magnetic resonance imaging interpretation: prospective study 74 traumatic fractures. Spine 37(11):E662

    Article  Google Scholar 

  27. 27.

    Dai L-Y, Ding W-G, Wang X-Y, Jiang L-S, Jiang S-D, Xu H-Z (2009) Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma 66(6):1610–1615. https://doi.org/10.1097/TA.0b013e3181848206

    Article  PubMed  Google Scholar 

  28. 28.

    Haba H, Taneichi H, Kotani Y et al (2003) Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg 99(1 Suppl):20–26

    PubMed  Google Scholar 

  29. 29.

    Gehweiler JA, Daffner RH, Osborne RL (1981) Relevant signs of stable and unstable thoracolumbar vertebral column trauma. Skeletal Radiol 7(3):179–183

    Article  Google Scholar 

  30. 30.

    Daffner RH, Deeb ZL, Rothfus WE (1987) The posterior vertebral body line: importance in the detection of burst fractures. AJR Am J Roentgenol 148(1):93–96. https://doi.org/10.2214/ajr.148.1.93

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Petersilge CA, Pathria MN, Emery SE, Masaryk TJ (1995) Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 194(1):49–54. https://doi.org/10.1148/radiology.194.1.7997581

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Rajasekaran S, Maheswaran A, Aiyer SN et al (2016) Prediction of posterior ligamentous complex injury in thoracolumbar fractures using non-MRI imaging techniques. Int Orthop (SICOT) 40:1075–1081

    Article  Google Scholar 

  33. 33.

    Kwon KY, Park HJ, Shin JS et al (2017) Another diagnostic tool in thoracolumbar posterior ligament complex injury: interspinous distance ratio. Eur Spine J (Germany) 26(5):1447–1453

    Article  Google Scholar 

  34. 34.

    Chen JX, Goswami A, Xu DL et al (2017) The radiologic assessment of posterior ligamentous complex injury in patients with thoracolumbar fracture. Eur Spine J (Germany) 26(5):p1454–p1462

    Article  Google Scholar 

  35. 35.

    Sixta S, Moore FO, Ditillo MF et al (2012) Screening for thoracolumbar spinal injuries in blunt trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg 73(5 Suppl 4):S326–S332. https://doi.org/10.1097/TA.0b013e31827559b8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Heidi Miracle for her assistance with data analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bharti Khurana.

Ethics declarations

Conflict of interest

The study was approved by the IRB, and the authors have no relevant conflicts of interest or copyright constraints.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 30238 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khurana, B., Prevedello, L.M., Bono, C.M. et al. CT for thoracic and lumbar spine fractures: Can CT findings accurately predict posterior ligament complex injury?. Eur Spine J 27, 3007–3015 (2018). https://doi.org/10.1007/s00586-018-5712-z

Download citation

Keywords

  • Spine trauma
  • Posterior ligament complex
  • Spine stability
  • Spine fracture
  • Compression fracture