Advertisement

European Spine Journal

, Volume 27, Supplement 2, pp 213–221 | Cite as

Cortical bone trajectory screws for circumferential arthrodesis in lumbar degenerative spine: clinical and radiological outcomes of 101 cases

  • Nicola Marengo
  • Pedro Berjano
  • Fabio Cofano
  • Marco Ajello
  • Francesco Zenga
  • Giulia Pilloni
  • Federica Penner
  • Salvatore Petrone
  • Lorenzo Vay
  • Alessandro Ducati
  • Diego Garbossa
Original Article

Abstract

Purpose

The use of cortical bone trajectory (CBT) pedicle screws for circumferential interbody fusion represents a viable alternative for single-level procedure with reduced invasiveness and less tissue destruction than the traditional technique. In addition, CBT screws have a potentially stronger pullout strength because of the greater amount of cortical bone intercepted. Only few series exist evaluating clinical and radiological outcomes of CBT screws.

Methods

This is a retrospective cohort study. All patients that underwent circumferential lumbar interbody fusion with CBT screws in our institution from 2014 to 2017 were reviewed. Patient demographics, clinical outcome with visual analogue scale (VAS) and Oswestry Disability Index (ODI), radiological data such as fusion, lordosis and muscle trauma, operative blood loss, hospital stay and use of fluoroscopy were evaluated.

Results

A total of 101 patients undergoing CBT-arthrodesis for degenerative lumbo-sacral disease were reviewed. Mean procedural time was 187 min. The mean operative blood loss and X-ray dose per procedure was 383 ml and 1.60 mg cm2, respectively. The mean hospital stay was 3.47 days. The mean follow-up was 18.23 months. Mean lordosis increment at the treated level was 4.2°. When the follow-up was longer than 12 months (53% of patients), fusion was obtained in 94% of cases. Mean ODI and VAS index improved with statistical significance.

Conclusions

This is to our knowledge that the largest available study regarding CBT for circumferential arthrodesis. Results underlined the safety of this technique and the promising clinical and radiological outcomes that will need a longer follow-up.

Graphical abstract

These slides can be retrieved under Electronic Supplementary material.

Keywords

Cortical bone trajectory Cortical pedicle screws Cortical screws Lumbar interbody fusion Spinal fusion Spinal fixation 

Notes

Conflict of interest

PB Honorarium for surgeon's education: Nuvasive, Medacta, Depuy Synthes. Grants for research: Nuvasive, Medacta, Depuy Synthes, K2M. No conflicts of interest were declared by the other authors.

Supplementary material

586_2018_5599_MOESM1_ESM.pptx (505 kb)
Supplementary material 1 (PPTX 505 kb)

References

  1. 1.
    Snyder LA, Martinez-Del-Campo E, Neal MT et al (2016) Lumbar spinal fixation with cortical bone trajectory pedicle screws in 79 patients with degenerative disease: perioperative outcomes and complications. World Neurosurg 88:205–213.  https://doi.org/10.1016/j.wneu.2015.12.065 CrossRefPubMedGoogle Scholar
  2. 2.
    Garbossa D, Pejrona M, Damilano M et al (2014) Pelvic parameters and global spine balance for spine degenerative disease: the importance of containing for the well being of content. Eur Spine J 23:S616–S627.  https://doi.org/10.1007/s00586-014-3558-6 CrossRefGoogle Scholar
  3. 3.
    Gautschi OP, Garbossa D, Tessitore E et al (2017) Maximal access surgery for posterior lumbar interbody fusion with divergent, cortical bone trajectory pedicle screws: a good option to minimize spine access and maximize the field for nerve decompression. J Neurosurg Sci 61:335–341.  https://doi.org/10.23736/S0390-5616.16.03230-6 PubMedCrossRefGoogle Scholar
  4. 4.
    Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373.  https://doi.org/10.1016/j.spinee.2008.07.008 CrossRefPubMedGoogle Scholar
  5. 5.
    Lee GW, Son JH, Ahn MW et al (2015) The comparison of pedicle screw and cortical screw in posterior lumbar interbody fusion: a prospective randomized noninferiority trial. Spine J 15:1519–1526.  https://doi.org/10.1016/j.spinee.2015.02.038 CrossRefPubMedGoogle Scholar
  6. 6.
    Marengo N, Ajello M, Pecoraro MF et al (2018) Cortical bone trajectory screws in posterior lumbar interbody fusion : minimally invasive surgery for maximal muscle sparing—a prospective comparative study with the traditional open technique. BioMed Res Int.  https://doi.org/10.1155/2018/7424568 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hung CW, Wu MF, Hong RT et al (2016) Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clin Neurol Neurosurg 145:41–45.  https://doi.org/10.1016/j.clineuro.2016.03.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Berjano P, Damilano M, Ismael M et al (2015) Minimally invasive PLIF with divergent, cortical trajectory pedicle screws. Eur Spine J 24:654–655.  https://doi.org/10.1007/s00586-015-3802-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Bresnahan LE, Smith JS, Ogden AT et al (2017) Assessment of paraspinal muscle cross-sectional area after lumbar decompression. Clin Spine Surg 30:E162–E168.  https://doi.org/10.1097/BSD.0000000000000038 CrossRefPubMedGoogle Scholar
  10. 10.
    Tortolani PJ, Stroh DA (2016) Cortical bone trajectory technique for posterior spinal instrumentation. J Am Acad Orthop Surg 24:755–761.  https://doi.org/10.5435/JAAOS-D-15-00597 CrossRefPubMedGoogle Scholar
  11. 11.
    Matsukawa K, Yato Y, Nemoto O et al (2013) Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech 26:E248–E253.  https://doi.org/10.1097/BSD.0b013e318288ac39 CrossRefPubMedGoogle Scholar
  12. 12.
    Matsukawa K, Yato Y, Imabayashi H et al (2016) Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir (Wien) 158:465–471.  https://doi.org/10.1007/s00701-016-2705-8 CrossRefGoogle Scholar
  13. 13.
    Wray S, Mimran R, Vadapalli S et al (2015) Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. J Neurosurg Spine 22:503–510.  https://doi.org/10.3171/2014.10.SPINE14205 CrossRefPubMedGoogle Scholar
  14. 14.
    Matsukawa K, Yato Y, Kato T et al (2014) Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique. J Neurosurg Spine 21:203–209.  https://doi.org/10.3171/2014.3.SPINE13665 CrossRefPubMedGoogle Scholar
  15. 15.
    Cofano F, Zenga F, Mammi M et al (2018) Intraoperative neurophysiological monitoring during spinal surgery: technical review in open and minimally invasive approaches. Neurosurg Rev.  https://doi.org/10.1007/s10143-017-0939-4 CrossRefPubMedGoogle Scholar
  16. 16.
    Kojima K, Asamoto S, Kobayashi Y et al (2015) Cortical bone trajectory and traditional trajectory—a radiological evaluation of screw-bone contact. Acta Neurochir (Wien) 157:1173–1178.  https://doi.org/10.1007/s00701-015-2432-6 CrossRefGoogle Scholar
  17. 17.
    Matsukawa K, Yato Y, Imabayashi H et al (2015) Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine 23:471–478.  https://doi.org/10.3171/2015.1.SPINE141103 CrossRefPubMedGoogle Scholar
  18. 18.
    Perez-Orribo L, Kalb S, Reyes PM et al (2013) Biomechanics of lumbar cortical screw–rod fixation versus pedicle screw–rod fixation with and without interbody support. Spine (Phila Pa 1976) 38:635–641.  https://doi.org/10.1097/brs.0b013e318279a95e CrossRefGoogle Scholar
  19. 19.
    Akpolat YT, İnceoğlu S, Kinne N et al (2016) Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine (Phila Pa 1976) 41:E335–E341.  https://doi.org/10.1097/brs.0000000000001233 CrossRefGoogle Scholar
  20. 20.
    Baluch DA, Patel AA, Lullo B et al (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine (Phila Pa 1976) 39:E1297–E1302.  https://doi.org/10.1097/brs.0000000000000553 CrossRefGoogle Scholar
  21. 21.
    Matsukawa K, Yato Y, Kato T et al (2014) In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976) 39:E240–E245.  https://doi.org/10.1097/brs.0000000000000116 CrossRefGoogle Scholar
  22. 22.
    Ninomiya K, Iwatsuki K, Ohnishi YI et al (2016) Significance of the pars interarticularis in the cortical bone trajectory screw technique: an in vivo insertional torque study. Asian Spine J 10:901–906.  https://doi.org/10.4184/asj.2016.10.5.901 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matsukawa K, Yato Y, Imabayashi H et al (2016) Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine 24:910–915.  https://doi.org/10.3171/2015.11.SPINE15926 CrossRefPubMedGoogle Scholar
  24. 24.
    Oshino H, Sakakibara T, Inaba T et al (2015) A biomechanical comparison between cortical bone trajectory fixation and pedicle screw fixation. J Orthop Surg Res 10:125.  https://doi.org/10.1186/s13018-015-0270-0 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Than KD, Mummaneni PV, Bridges KJ et al (2017) Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg Focus 43:E7.  https://doi.org/10.3171/2017.8.FOCUS17479 CrossRefPubMedGoogle Scholar
  26. 26.
    Gejo R, Matsui H, Kawaguchi Y et al (1999) Serial changes in trunk muscle performance after posterior lumbar surgery. Spine (Phila Pa 1976) 24:1023–1028CrossRefGoogle Scholar
  27. 27.
    Sakaura H, Miwa T, Yamashita T et al (2017) Cortical bone trajectory screw fixation versus traditional pedicle screw fixation for 2-level posterior lumbar interbody fusion: comparison of surgical outcomes for 2-level degenerative lumbar spondylolisthesis. J Neurosurg Spine 1–6.  https://doi.org/10.3171/2017.5.spine161154
  28. 28.
    Rivet DJ, Jeck D, Brennan J et al (2004) Clinical outcomes and complications associated with pedicle screw fixation-augmented lumbar interbody fusion. J Neurosurg Spine 1:261–266.  https://doi.org/10.3171/spi.2004.1.3.0261 CrossRefPubMedGoogle Scholar
  29. 29.
    Bydon M, Xu R, Santiago-Dieppa D et al (2014) Adjacent-segment disease in 511 cases of posterolateral instrumented lumbar arthrodesis: floating fusion versus distal construct including the sacrum. J Neurosurg Spine 20:380–386.  https://doi.org/10.3171/2013.12.SPINE13789 CrossRefPubMedGoogle Scholar
  30. 30.
    Mobbs RJ, Phan K, Malham G et al (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg (Hong Kong) 1:2–18.  https://doi.org/10.3978/j.issn.2414-469X.2015.10.05 CrossRefGoogle Scholar
  31. 31.
    Noriega DC, Hernández-Ramajo R, Rodríguez-Monsalve Milano F et al (2017) Risk-benefit analysis of navigation techniques for vertebral transpedicular instrumentation: a prospective study. Spine J 17:70–75.  https://doi.org/10.1016/j.spinee.2016.08.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nicola Marengo
    • 1
  • Pedro Berjano
    • 2
  • Fabio Cofano
    • 1
  • Marco Ajello
    • 1
  • Francesco Zenga
    • 1
  • Giulia Pilloni
    • 1
  • Federica Penner
    • 1
  • Salvatore Petrone
    • 1
  • Lorenzo Vay
    • 1
  • Alessandro Ducati
    • 1
  • Diego Garbossa
    • 1
  1. 1.Section of Neurosurgery, Division of NeuroscienceUniversity of TurinTurinItaly
  2. 2.G Spine 4IRCCS Orthopaedic Institute GaleazziMilanItaly

Personalised recommendations