Skip to main content
Log in

Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone–implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod’s shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software.

Methods

Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod’s shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer.

Results

3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average).

Conclusion

In this preliminary study, the software based on 3D stereoradiography low-dose system used to plan AIS surgery seems reliable for preoperative planning and precontoured rods. It is an interesting tool to improve surgeons’ practice, since 3D planning is expected to reduce complications such as iatrogenic malalignment and to help for a better understanding of the complications, choosing the location of the transitional vertebra. However, further work is needed to improve thoracic kyphosis planning.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Somerville EW (1952) Rotational lordosis; the development of single curve. J Bone Jt Surg Br 34-B(3):421–427

    Article  CAS  Google Scholar 

  2. Newton PO, Yaszay B, Upasani VV, Pawelek JB, Bastrom TP, Lenke LG et al (2010) Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine 35(14):1365–1370

    Article  PubMed  Google Scholar 

  3. Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W (2016) Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine 41(10):864–871

    Article  PubMed  Google Scholar 

  4. Suk S-I, Kim J-H, Kim S-S, Lim D-J (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21(1):13–22

    Article  PubMed  Google Scholar 

  5. Lowenstein JE, Matsumoto H, Vitale MG, Weidenbaum M, Gomez JA, Lee FY-I et al (2007) Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine 32(4):448–452

    Article  PubMed  Google Scholar 

  6. Hwang SW, Samdani AF, Tantorski M, Cahill P, Nydick J, Fine A et al (2011) Cervical sagittal plane decompensation after surgery for adolescent idiopathic scoliosis: an effect imparted by postoperative thoracic hypokyphosis. J Neurosurg Spine 15(5):491–496

    Article  PubMed  Google Scholar 

  7. Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Jt Surg Am 97(20):1694–1701

    Article  Google Scholar 

  8. Brink RC, Schlösser TPC, Colo D, Vavruch L, van Stralen M, Vincken KL et al (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine 42(11):818–822

    Article  PubMed  Google Scholar 

  9. Bagchi K, Mohaideen A, Thomson JD, Foley LC (2002) Hardware complications in scoliosis surgery. Pediatr Radiol 32(7):465–475

    Article  PubMed  Google Scholar 

  10. Albers HW, Hresko MT, Carlson J, Hall JE (2000) Comparison of single- and dual-rod techniques for posterior spinal instrumentation in the treatment of adolescent idiopathic scoliosis. Spine 25(15):1944–1949

    Article  PubMed  CAS  Google Scholar 

  11. Wattenbarger JM, Richards BS, Herring JA (2000) A comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine 25(13):1680–1688

    Article  PubMed  CAS  Google Scholar 

  12. Bago J, Ramirez M, Pellise F, Villanueva C (2003) Survivorship analysis of Cotrel–Dubousset instrumentation in idiopathic scoliosis. Eur Spine J 12(4):435–439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu K-MG, Keshavarzi S et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867

    Article  PubMed  Google Scholar 

  14. Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003

    Article  PubMed  Google Scholar 

  15. Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26(15):1668–1672

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen T-Q, Buckley JM, Ames C, Deviren V (2011) The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng [H] 225(2):194–198

    Article  Google Scholar 

  17. Johnston CE, Ashman RB, Sherman MC, Eberle CF, Herndon WA, Sullivan JA et al (1987) Mechanical consequences of rod contouring and residual scoliosis in sublaminar segmental instrumentation. J Orthop Res 5(2):206–216

    Article  PubMed  Google Scholar 

  18. Lindsey C, Deviren V, Xu Z, Yeh R-F, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine 31(15):1680–1687

    Article  PubMed  Google Scholar 

  19. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30(6):682–688

    Article  PubMed  Google Scholar 

  20. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029

    Article  PubMed  Google Scholar 

  21. Schwab F, Farcy J-P, Bridwell K, Berven S, Glassman S, Harrast J et al (2006) A clinical impact classification of scoliosis in the adult. Spine 31(18):2109–2114

    Article  PubMed  Google Scholar 

  22. Schwab F, Patel A, Ungar B, Farcy J-P, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35(25):2224–2231

    Article  PubMed  Google Scholar 

  23. Moal B, Schwab F, Ames CP, Smith JS, Ryan D, Mummaneni PV et al (2014) Radiographic outcomes of adult spinal deformity correction: a critical analysis of variability and failures across deformity patterns. Spine Deform 2(3):219–225

    Article  PubMed  Google Scholar 

  24. Clements DH, Marks M, Newton PO, Betz RR, Lenke L, Shufflebarger H et al (2011) Did the Lenke classification change scoliosis treatment? Spine 36(14):1142–1145

    Article  PubMed  Google Scholar 

  25. Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703

    Article  PubMed  PubMed Central  Google Scholar 

  26. Watanabe K, Nakamura T, Iwanami A, Hosogane N, Tsuji T, Ishii K et al (2012) Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine. BMC Musculoskelet Disord 13:99

    Article  PubMed  PubMed Central  Google Scholar 

  27. Helenius I, Remes V, Yrjönen T, Ylikoski M, Schlenzka D, Helenius M et al (2003) Harrington and Cotrel–Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Jt Surg Am 85-A(12):2303–2309

    Article  Google Scholar 

  28. Lonner BS, Ren Y, Newton PO, Shah SA, Samdani AF, Shufflebarger HL et al (2017) Risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis—the pelvis and other considerations. Spine Deform 5(3):181–188

    Article  PubMed  Google Scholar 

  29. Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 22(2):296–304

    Article  PubMed  Google Scholar 

  30. Hirsch C, Ilharreborde B, Mazda K (2015) EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J 24(7):1408–1414

    Article  PubMed  Google Scholar 

  31. Ilharreborde B, Sebag G, Skalli W, Mazda K (2013) Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J 22(11):2382–2391

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine 35(22):E1193–E1198

    Article  PubMed  Google Scholar 

  33. Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Jt Surg Am 87(2):260–267

    Article  Google Scholar 

  34. Schwab F, Lafage V, Patel A, Farcy J-P (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine 34(17):1828–1833

    Article  PubMed  Google Scholar 

  35. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy J-PC, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387–392

    Article  PubMed  Google Scholar 

  36. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599–E606

    Article  PubMed  Google Scholar 

  37. Ilharreborde B, Hirsch C, Presedo A, Penneçot G-F, Mazda K (2012) Circumferential fusion with anterior strut grafting and short-segment multipoint posterior fixation for burst fractures in skeletally immature patients: a preliminary report. J Pediatr Orthop 32(5):440–444

    Article  PubMed  Google Scholar 

  38. Salmingo RA, Tadano S, Abe Y, Ito M (2014) Influence of implant rod curvature on sagittal correction of scoliosis deformity. Spine J 14(8):1432–1439

    Article  PubMed  Google Scholar 

  39. Hey HWD, Wong GC, Chan CX, Lau L-L, Kumar N, Thambiah JS et al (2017) Reproducibility of sagittal radiographic parameters in adolescent idiopathic scoliosis—a guide to reference values using serial imaging. Spine J 17(6):830–836

    Article  PubMed  Google Scholar 

  40. Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng ABM (2008) Preoperative planning simulator for spinal deformity surgeries. Spine 33(20):2143–2152

    Article  PubMed  CAS  Google Scholar 

  41. Lavelle WF, Beltran AA, Carl AL, Uhl RL, Hesham K, Albanese SA (2016) Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel–Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord 11:18

    Article  PubMed  PubMed Central  Google Scholar 

  42. Merriman M, Hu C, Noyes K, Sanders J (2015) Selection of the lowest level for fusion in adolescent idiopathic scoliosis—a systematic review and meta-analysis. Spine Deform 3(2):128–135

    Article  PubMed  Google Scholar 

  43. Larson AN, Fletcher ND, Daniel C, Richards BS (2012) Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine 37(10):833–839

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Ferrero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, exept B Ilharreborde who is consultant but no funding was received for that study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 799 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, E., Mazda, K., Simon, AL. et al. Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery. Eur Spine J 27, 2165–2174 (2018). https://doi.org/10.1007/s00586-018-5591-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5591-3

Keywords

Navigation