Spondylolisthesis adjacent to a cervical disc arthroplasty does not increase the risk of adjacent level degeneration

  • David Christopher Kieser
  • Derek Thomas Cawley
  • Cecile Roscop
  • Simon Mazas
  • Pierre Coudert
  • Louis Boissiere
  • Ibrahim Obeid
  • Jean-Marc Vital
  • Vincent Pointillart
  • Olivier Gille
Original Article
  • 31 Downloads

Abstract

Purpose

To understand whether a spondylolisthesis in the sub-axial spine cranial to a cervical disc arthroplasty (CDA) construes a risk of adjacent level disease (ALD).

Methods

A retrospective review of 164 patients with a minimum 5-year follow-up of a cervical disc arthroplasty was performed. Multi-level surgeries, including hybrid procedures, were included. Multiple implant types were included. The two inter-vertebral discs (IVD) cranial of the CDA were monitored for evidence of radiologic degeneration using the Kettler criteria.

Results

The rate of ALD in CDA found in this series was 17.8%, with most affecting the immediately adjacent IVD (27.4 and 7.6%, respectively p = 0.000). Pre-operative mild spondylolisthesis adjacent to a planned CDA was not found to be a risk factor for ALD within 5 years. Those with a degenerative spondylolisthesis are at higher risk of ALD (33%) than those with a non-degenerative cause for their spondylolisthesis (11%). Post-operative CDA alignment, ROM or induced spondylolisthesis do not affect the rate of ALD in those with an adjacent spondylolisthesis. Patients with ALD experience significantly worse 5-year pain and functional outcomes than those unaffected by ALD.

Conclusions

A pre-operatively identified mild spondylolisthesis in the sub-axial spine cranially adjacent to a planned CDA is not a risk factor for ALD within 5 years.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

Keywords

Adjacent level disease Proximal junctional failure Junctional kyphosis Cervical disc arthroplasty Spondylolisthesis 

Notes

Acknowledgements

Glynny Kieser for her editorial input.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

586_2018_5574_MOESM1_ESM.pptx (186 kb)
Supplementary material 1 (PPTX 185 kb)

References

  1. 1.
    Meyerding HW (1932) Spondylolisthesis. Surg Gynecol Obstet 54:371–377Google Scholar
  2. 2.
    Deburge A, Mazda K, Guigui P (1995) Unstable degenerative spondylolisthesis of the cervical spine. JBJS 77:122–125Google Scholar
  3. 3.
    Boulos AS, Lovely TJ (1996) Degenerative cervical spondylolisthesis: diagnosis and management in five cases. J Spinal Disord 9(3):241–245CrossRefPubMedGoogle Scholar
  4. 4.
    Woiciechowsky C, Thomale UW, Kroppenstedt SN (2004) Degenerative spondylolisthesis of the cervical spine—symptoms and surgical strategies depending on disease progress. Eur Spine J 13(8):680–684CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dean CL, Gabriel JP, Cassinelli EH et al (2009) Degenerative spondylolisthesis of the cervical spine: analysis of 58 patients treated with anterior cervical decompression and fusion. Spine J 9(6):439–446CrossRefPubMedGoogle Scholar
  6. 6.
    Jiang SD, Jiang LS, Dai LY (2011) Degenerative cervical spondylolisthesis: a systematic review. Int Ortho 35(6):869–875CrossRefGoogle Scholar
  7. 7.
    Moseley I (1976) Neural arch dysplasia of the sixth cervical vertebra. Congenital cervical spondylolisthesis. Br J Radiol 49(577):81–83CrossRefPubMedGoogle Scholar
  8. 8.
    Guillaume J, Roulleau J, Fardou H et al (1976) Congenital spondylolysis of cervical vertebrae with spondylolisthesis and frontal narrowing of the spinal canal. Neuroradiol 11(3):159–163CrossRefGoogle Scholar
  9. 9.
    Robson MJ, Brown LM, Sharrard WJW (1980) Cervical spondylolisthesis and other skeletal abnormalities in Rubinstein-Taybi syndrome. JBJS 62(3):297–299Google Scholar
  10. 10.
    Schwartz AM, Wechsler RJ, Landy MD et al (1982) Posterior arch defects of the cervical spine. Skeletal Radiol 8(2):135–139CrossRefPubMedGoogle Scholar
  11. 11.
    Reitz H, Joubert M (1964) Intractable headache and cervico-brachialgia treated by complete replacement of cervical intervertebral discs with a metal prosthesis. South African Med J 38:881–884Google Scholar
  12. 12.
    Heller JG, Sasso RC, Papadopoulos SM et al (2009) Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine 34:101–107CrossRefPubMedGoogle Scholar
  13. 13.
    Coric D, Kim PK, Clemente JD et al (2013) Prospective randomized study of cervical arthroplasty and anterior cervical discectomy and fusion with long-term follow-up: results in 74 patients from a single site. J Neurosurg Spine 18:36–42CrossRefPubMedGoogle Scholar
  14. 14.
    Traynelis VC, Arnold PM, Fourney DR et al (2013) Alternative procedures for the treatment of cervical spondylotic myelopathy: arthroplasty, oblique corpectomy, skip laminectomy: evaluation of comparative effectiveness and safety. Spine 38:S210–S231CrossRefPubMedGoogle Scholar
  15. 15.
    Burkus JK, Traynelis VC, Haid RW Jr et al (2014) Clinical and radiographic analysis of an artificial cervical disc: 7-year follow-up from the Prestige prospective randomized controlled clinical trial: clinical article. J Neurosurg Spine 21:516–528CrossRefPubMedGoogle Scholar
  16. 16.
    Radcliff K, Coric D, Albert T (2016) Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial. J Neurosurg Spine 25:213–224CrossRefPubMedGoogle Scholar
  17. 17.
    Mummaneni PV, Amin BY, Wu JC et al (2012) Cervical artificial disc replacement versus fusion in the cervical spine: a systematic review comparing longterm follow-up results from two FDA trials. J Evid Based Spine Care 3:S59–S66CrossRefGoogle Scholar
  18. 18.
    Wu JC, Hsieh PC, Mummaneni PV et al (2015) Spinal motion preservation surgery. Biomed Res Int.  https://doi.org/10.1155/2015/372502 Google Scholar
  19. 19.
    Chin-See-Chong TC, Gadjradj PS, Boelen RJ et al (2017) Current practice of cervical disc arthroplasty: a survey among 383 AOSpine international members. Neurosurg Focus 42(2):E8CrossRefPubMedGoogle Scholar
  20. 20.
    Shriver MF, Lubelski D, Sharma AM et al (2016) Adjacent segment degeneration and disease following cervical arthroplasty: a systematic review and meta-analysis. Spine J. 16(2):168–181CrossRefPubMedGoogle Scholar
  21. 21.
    Wachowski MM, Weiland J, Wagner M et al (2017) Kinematics of cervical segments C5/6 in axial rotation before and after total disc arthroplasty. Eur Spine J 26:2425–2433CrossRefPubMedGoogle Scholar
  22. 22.
    Sundseth J, Fredriksli OA, Kolstad F et al (2017) The Norwegian Cervical Arthroplasty Trial (NORCAT): 2-year clinical outcome after single-level cervical arthroplasty versus fusion – a prospective, single-blinded, randomized, controlled multicenter study. Eur Spine J 26(4):1225–1235CrossRefPubMedGoogle Scholar
  23. 23.
    Harrison DE, Harrison DD, Cailliet R et al (2000) Cobb method or Harrison posterior tangent method: which to choose for lateral cervical radiographic analysis. Spine 25(16):2072–2078CrossRefPubMedGoogle Scholar
  24. 24.
    Kettler A, Rohlmann F, Neidlinger-Wilke C et al (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part II. Cervical spine. Eur Spine J 15(6):732–741CrossRefPubMedGoogle Scholar
  25. 25.
    Kopacs KJ, Connolly PJ (1999) The prevalence of cervical spondylolisthesis. Orthop 22(7):677–679Google Scholar
  26. 26.
    Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. JNS. Spine 90(2):163–169Google Scholar
  27. 27.
    Eck J, Humphreys SC, Lim TH et al (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine 27(22):2431–2434CrossRefPubMedGoogle Scholar
  28. 28.
    Vialle EN, Vialle LRG, Simões CE et al (2016) Clinical-radiographic correlation of degenerative changes of the spine – systematic review. Columna. 15(4):325–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • David Christopher Kieser
    • 1
    • 3
  • Derek Thomas Cawley
    • 2
  • Cecile Roscop
    • 2
  • Simon Mazas
    • 2
  • Pierre Coudert
    • 2
  • Louis Boissiere
    • 2
  • Ibrahim Obeid
    • 2
  • Jean-Marc Vital
    • 2
  • Vincent Pointillart
    • 2
  • Olivier Gille
    • 2
  1. 1.Department of Orthopaedic Surgery and Musculoskeletal Medicine, Canterbury School of MedicineUniversity of OtagoChristchurchNew Zealand
  2. 2.L’Institut de la Colonne Vertébrale, CHU PellegrinBordeauxFrance
  3. 3.Department of Orthopaedic Surgery and Musculoskeletal MedicineCanterbury District Health BoardChristchurchNew Zealand

Personalised recommendations