European Spine Journal

, Volume 27, Issue 4, pp 789–796 | Cite as

Georg Schmorl Prize of the German Spine Society (DWG) 2017: correction of spino-pelvic alignment with relordosing mono- and bisegmental TLIF spondylodesis

  • Frederick Galla
  • Dirk Wähnert
  • Ulf Liljenqvist
Original Article



A balanced ratio of the main parameters of lumbar lordosis (LL) and pelvic incidence (PI) has high clinical relevance. A postoperative mismatch of LL and PI has been described in the literature to be associated with an inferior clinical outcome and higher postoperative revision rates. The aim of this retrospective, radiological study is to evaluate the magnitude of relordosing in mono-/bisegmental TLIF spondylodesis affecting the spino-pelvic alignment and the main contributing factors.

Materials and methods

164 patients (pat.) underwent monosegmental (n = 115, G1) and bisegmental (n = 49, G2) TLIF spondylodesis, respectively, for different indications in 2016 in our hospital. Pelvic incidence, lumbar lordosis (preop., postop., 3 months postop.), implanted cage sizes, and the use of additional Smith–Petersen osteotomies were analysed retrospectively. Patients were divided into three groups depending on match of LL/PI (PI-LL < 10° green, PI-LL = 10-20° yellow, PI-LL > 20° red). Furthermore, a differentiation was made between surgeons with more than or less than 10 years of spinal surgery experience, respectively.


29.6% of pat. in G1 and 16.3% in G2 showed a highly pronounced preoperative spino-pelvic mismatch (red). A high grade of mismatch (yellow) between LL/PI was seen in 29.6% in G1 and in 38.8% in G2. The remaining patients already had a balanced ratio of LL/PI (green). Through relordosing TLIF the LL could be corrected significantly (p < 0.05). Therefore, the number of patients with a balanced sagittal alignment (green) increased from 40.9% preop. to 70.4% postoperative in G1 and from 44.9 to 85.7% in G2 (p < 0.05). The number of pat. with highly pronounced preoperative mismatch (red) could be lowered in G1 from 29.6 to 13.9% and in G2 from 16.3 to 2% postoperative (p < 0.05). In G1, the preoperative LL could be corrected from 46.3° to 53.8° (yellow) and 35.7° to 45.8° (red), while in G2, a correction was possible from 43.4° to 51.5° (yellow) and 36.6° to 50.1° (red) (p < 0.05). No significant difference of segmental/complete LL was found between radiologic measurement immediately postoperative and at the 3-month follow-up. In monosegmental fusion higher cages sizes lead to a better match of LL/PI (p < 0.05). The specific cage lordosis (5° vs. 10°) had no influence on the extent of relordosing. Experienced surgeons had significant higher postoperative matches of LL/PI (p < 0.05) and accomplished more osteotomies (p < 0.05).


This retrospective study demonstrates that significant relordosing and, therefore, correction of the spino-pelvic alignment are possible with mono-/bisegmental TLIF spondylodesis. Positive influence of higher cage sizes and surgeon’s experience was shown. We conclude that the ratio of LL/PI should be taken into account preoperatively in lumbar fusion surgery when planning mono-/bisegmental TLIF spondylodesis to optimize spino-pelvic alignment.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.


Transforaminal lumbar interbody fusion TLIF Sagittal alignment Lumbar lordosis Segmental lordosis Spino-pelvic mismatch 


Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.

Supplementary material

586_2018_5503_MOESM1_ESM.pptx (262 kb)
Supplementary material 1 (PPTX 261 kb)


  1. 1.
    Harms JG, Jeszensky D (1998) The unilateral, transforaminal approach for posterior lumbar interbody fusion. Orthop Traumatol 6(2):88–99Google Scholar
  2. 2.
    Whitecloud TS 3rd, Roesch WW, Ricciardi JE (2001) Transforaminal interbody fusion versus anterior-posterior interbody fusion of the lumbar spine: a financial analysis. J Spinal Disord 14(2):100–103CrossRefPubMedGoogle Scholar
  3. 3.
    Phan K, Thayaparan GK, Mobbs RJ (2015) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion—systematic review and meta-analysis. Br J Neurosurg 29(5):705–711CrossRefPubMedGoogle Scholar
  4. 4.
    Rao PJ, Ghent F, Phan K et al (2015) Stand-alone anterior lumbar interbody fusion for treatment of degenerative spondylolisthesis. J Clin Neurosci 22:1619–1624CrossRefPubMedGoogle Scholar
  5. 5.
    Hee HT, Castro FP Jr, Majd ME, Holt RT, Myers L (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14(6):533–540CrossRefPubMedGoogle Scholar
  6. 6.
    Cole CD, McCall TD, Schmidt MH et al (2009) Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr Rev Musculoskelet Med 2:118–126CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Humphreys SC, Hodges SD, Patwardhan AG, Eck JC, Murphy RB, Covington LA (2001) Comparison of posterior and transforaminal approaches to lumbar interbody fusion. Spine (Phila Pa 1976) 26(5):567–571CrossRefGoogle Scholar
  8. 8.
    Lestini WF, Fulghum JS, Whitehurst LA (1994) Lumbar spinal fusion: advantages of posterior lumbar interbody fusion. Surg Technol Int 3:577–590PubMedGoogle Scholar
  9. 9.
    Potter BK, Freedman BA, Verwiebe EG, Hall JM, Polly DW Jr, Kuklo TR (2005) Transforaminal lumbar interbody fusion: clinical and radiographic results and complications in 100 consecutive patients. J Spinal Disord Tech 18(4):337–346CrossRefPubMedGoogle Scholar
  10. 10.
    Lim HJ, Kwon SC, Roh SW, Jeon SR, Rhim SC (2005) Outcomes of unilateral transforaminal lumbar interbody fusion in degenerative lumbar spine disease. Korean J Spine 2(1):19–25Google Scholar
  11. 11.
    Salehi SA, Tawk R, Ganju A, LaMarca F, Liu JC, Ondra SL (2004) Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients. Neurosurgery 54(2):368–374CrossRefPubMedGoogle Scholar
  12. 12.
    Rosenberg WS, Mummaneni PV (2001) Transforaminal lumbar interbody fusion: technique, complications, and early results. Neurosurgery 48(3):569–574CrossRefPubMedGoogle Scholar
  13. 13.
    Rodríguez-Vela J, Lobo-Escolar A, Joven E, Muñoz-Marín J, Herrera A, Velilla J (2013) Clinical outcomes of minimally invasive versus open approach for one-level transforaminal lumbar interbody fusion at the 3- to 4-year follow-up. Eur Spine J 22(12):2857–2863CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kim EH, Lee JH, Sihn DH, Kim YE, Jae HW (2005) Factors affecting segmental lordotic angle after posterior lumbar interbody fusion using metal cage. J Korean Soc Spine Surg 12(4):316–323CrossRefGoogle Scholar
  15. 15.
    Goldstein JA, Macenski MJ, Griffith SL, McAfee PC (2001) Lumbar sagittal alignment after fusion with a threaded interbody cage. Spine (Phila Pa 1976) 26(10):1137–1142CrossRefGoogle Scholar
  16. 16.
    Ould-Slimane M, Lenoir T, Dauzac C, Rillardon L, Hoffmann E, Guigui P, Ilharreborde B (2012) Influence of transforaminal lumbar interbody fusion procedures on spinal and pelvic parameters of sagittal balance. Eur Spine J 21(6):1200–1206CrossRefPubMedGoogle Scholar
  17. 17.
    Akamaru T, Kawahara N, Tim Yoon S et al (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976) 28(14):1560–1566Google Scholar
  18. 18.
    Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29(17):1938–1944CrossRefGoogle Scholar
  19. 19.
    Klemme WR, Owens BD, Dhawan A, Zeidman S, Polly DW Jr (2001) Lumbar sagittal contour after posterior interbody fusion: threaded devices alone versus vertical cages plus posterior instrumentation. Spine (Phila Pa 1976) 26(5):534–537CrossRefGoogle Scholar
  20. 20.
    Radcliff KE, Kepler CK, Jakoi A et al (2013) Adjacent segment disease in the lumbar spine following different treatment interventions. Spine J 13:1339–1349CrossRefPubMedGoogle Scholar
  21. 21.
    Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory 3- to 5-year results. Eur Spine J 14(6):551–558CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Audat Z, Moutasem O, Yousef K, Mohammad B (2012) Comparison of clinical and radiological results of posterolateral fusion, posterior lumbar interbody fusion and transforaminal lumbar interbody fusion techniques in the treatment of degenerative lumbar spine. Singap Med J 53:183–187Google Scholar
  23. 23.
    Razak Hamid Rahmatullah Bin Abd, Dhoke Priyesh, Tay Kae-Sian, Yeo William, Yue Wai-Mun (2017) Single-level minimally invasive transforaminal lumbar interbody fusion provides sustained improvements in clinical and radiological outcomes up to 5 years postoperatively in patients with neurogenic symptoms secondary to spondylolisthesis. Asian Spine J 11(2):204–212CrossRefGoogle Scholar
  24. 24.
    Yan DL, Pei FX, Li J, Soo CL (2008) Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. Eur Spine J 17:1311–1316CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lauber S, Schulte TL, Liljenqvist U, Halm H, Hackenberg L (2006) Clinical and radiologic 2- to 4-year results of transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Spine 31(15):1693–1698CrossRefPubMedGoogle Scholar
  26. 26.
    Challier V, Boissiere L, Obeid I, Vital JM, Castelain JE, Bénard A, Ong N, Ghailane S, Pointillart V, Mazas S, Mariey R, Gille O (2017) One-level lumbar degenerative spondylolisthesis and posterior approach: is transforaminal lateral interbody fusion mandatory? Spine 42(8):529–531CrossRefGoogle Scholar
  27. 27.
    Kim SB, Jeon TS, Heo YM, Lee WS, Yi JW, Kim TK, Hwang CM (2009) Radiographic results of single level transforaminal lumbar interbody fusion in degenerative lumbar spine disease: focusing on changes of segmental lordosis in fusion segment. Clin Orthop Surg 1(4):207–213CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kepler CK, Rihn JA, Radcliff KE, Patel AA, Anderson DG, Vaccaro AR, Hilibrand AS, Albert TJ (2012) Restoration of lordosis and disk height after single-level transforaminal lumbar interbody fusion. Orthop Surg 4(1):15–20CrossRefPubMedGoogle Scholar
  29. 29.
    Lee MJ, Wiater B, Bransford RJ, Bellabarba C, Chapman JR (2010) Lordosis restoration after Smith-Petersen osteotomies and interbody strut placement: a radiographic study in cadavers. Spine (Phila Pa 1976) 35(25):E1487–E1491CrossRefGoogle Scholar
  30. 30.
    Schwab F, Blondel B, Chay E, Demakakos J, Lenke L, Tropiano P, Ames C, Smith JS, Shaffrey CI, Glassman S, Farcy JP, Lafage V (2014) The comprehensive anatomical spinal osteotomy classification. Neurosurgery 74(1):112–120CrossRefPubMedGoogle Scholar
  31. 31.
    Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size: a prospective controlled clinical study. Spine (Phila Pa 1976) 19(14):1611–1618CrossRefGoogle Scholar
  32. 32.
    Murakami H, Demura S, Kato S, Kawahara N, Tsuchiya H (2015) Outcome of posterior lumbar interbody fusion for L4–L5 degenerative spondylolisthesis. Indian J Orthop 49(3):284–288CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Duncan JW, Bailey RA (2012) An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion. Eur Spine J 22(2):1–7Google Scholar
  34. 34.
    Kawakami M, Tamaki T, Ando M, Yamada H, Hashizume H, Yoshida M (2002) Lumbar sagittal balance influences the clinical outcome after decompression and posterolateral spinal fusion for degenerative lumbar spondylolisthesis. Spine (Phila Pa 1976) 27(1):59–64CrossRefGoogle Scholar
  35. 35.
    Oda I, Cunningham BW, Buckley RA et al (1999) Does spinal kyphotic deformity influence the biomechanical characteristics of the adjacent motion segments an in vivo animal model. Spine (Phila Pa 1976) 24(20):2139–2146CrossRefGoogle Scholar
  36. 36.
    Brantigan JW, Neidre A (2003) Achievement of normal sagittal plane alignment using a wedged carbon fiber reinforced polymer fusion cage in treatment of spondylolisthesis. Spine J 3(3):186–196CrossRefPubMedGoogle Scholar
  37. 37.
    Diedrich O, Perlick L, Schmitt O, Kraft CN (2001) Radiographic spinal profile changes induced by cage design after posterior lumbar interbody fusion preliminary report of a study with wedged implants. Spine (Phila Pa 1976) 26(12):E274–E280CrossRefGoogle Scholar
  38. 38.
    Zhao J, Hou T, Wang X, Ma S (2003) Posterior lumbar interbody fusion using one diagonal fusion cage with transpedicular screw/rod fixation. Eur Spine J 12:173–177PubMedPubMedCentralGoogle Scholar
  39. 39.
    Godde S, Fritsch E, Dienst M, Kohn D (2003) Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion. Spine (Phila Pa 1976) 28(15):1693–1699Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.WirbelsäulenchirurgieSt. Franziskus Hospital MuensterMünsterGermany
  2. 2.Unfallchirurgie Universitätsklinikum MünsterMünsterGermany

Personalised recommendations