Advertisement

European Spine Journal

, Volume 27, Issue 2, pp 406–415 | Cite as

Factors influencing spinal sagittal balance, bone mineral density, and Oswestry Disability Index outcome measures in patients with rheumatoid arthritis

  • Kazutaka Masamoto
  • Bungo Otsuki
  • Shunsuke Fujibayashi
  • Koichiro Shima
  • Hiromu Ito
  • Moritoshi Furu
  • Motomu Hashimoto
  • Masao Tanaka
  • Stephen Lyman
  • Hiroyuki Yoshitomi
  • Shimei Tanida
  • Tsuneyo Mimori
  • Shuichi Matsuda
Original Article
  • 205 Downloads

Abstract

Purpose

To identify the factors influencing spinal sagittal alignment, bone mineral density (BMD), and Oswestry Disability Index (ODI) outcome measures in patients with rheumatoid arthritis (RA).

Methods

We enrolled 272 RA patients to identify the factors influencing sagittal vertical axis (SVA). Out of this, 220 had evaluation of bone mineral density (BMD) and vertebral deformity (VD) on the sagittal plane; 183 completed the ODI questionnaire. We collected data regarding RA-associated clinical parameters and standing lateral X-ray images via an ODI questionnaire from April to December 2012 at a single center. Patients with a history of spinal surgery or any missing clinical data were excluded. Clinical parameters included age, sex, body mass index, RA disease duration, disease activity score 28 erythrocyte sedimentation rate (DAS28-ESR), serum anti-cyclic citrullinated peptide antibody, serum rheumatoid factor, serum matrix metalloproteinase-3, BMD and treatment type at survey, such as methotrexate (MTX), biological disease-modifying anti-rheumatic drugs, and glucocorticoids. We measured radiological parameters including pelvic incidence (PI), lumbar lordosis (LL), and SVA. We statistically identified the factors influencing SVA, BMD, VD, and ODI using multivariate regression analysis.

Results

Multivariate regression analysis showed that larger SVA correlated with older age, higher DAS28-ESR, MTX nonuse, and glucocorticoid use. Lower BMD was associated with female, older age, higher DAS28-ESR, and MTX nonuse. VD was associated with older age, longer disease duration, lower BMD, and glucocorticoid use. Worse ODI correlated with older age, larger PI-LL mismatch or larger SVA, higher DAS28-ESR, and glucocorticoid use.

Conclusions

In managing low back pain and spinal sagittal alignment in RA patients, RA-related clinical factors and the treatment type should be taken into consideration.

Keywords

Spinal sagittal alignment Oswestry Disability Index Rheumatoid arthritis Disease activity score Glucocorticoid Methotrexate 

Notes

Acknowledgements

We wish to thank Dr. Fujii for his clinical data collection.

Compliance with ethical standards

Conflict of interest

For the present study, we received no payment or support in any aspect of the submitted work. However, outside the submitted work, there are several conflicts of interest, which are as follows: During this study, M. F., M. H, and M. T. belonged to the Department of the Control for Rheumatic Disease, which is financially supported by four pharmaceutical companies (Mitsubishi Tanabe, Chugai, Bristol-Myers Squibb, and Eisai). Five pharmaceutical companies (Pfizer, Astellas, AbbVie GK, Ayumi, Taisyo Toyama, and Eisai) provided scholarship donations to this center. M. H. received a research grant from Astellas. H. I. received research grants from Bristol-Myers Squibb, and Astellas. T. M. received grants from 8 pharmaceutical companies (Acterion, Ayumi, Astellas, Bristol-Myers Squibb, Chugai, Daiichi-Sankyo, Eisai, and Mitsubishi Tanabe) and payment for lectures from two pharmaceutical companies (Chugai and Mitsubishi Tanabe). K. M., B. O., S. F., K. S., S. L., H. Y., S. T., and S. M. declare no conflicts of interest for the present study.

Ethical approval

The approval of the institutional ethics committee of Kyoto University was obtained for this study.

References

  1. 1.
    Duval-Beaupère G, Schmidt C, Cosson P (1992) A barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462.  https://doi.org/10.1007/BF02368136 CrossRefPubMedGoogle Scholar
  2. 2.
    Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Diebo BG, Varghese JJ, Lafage R et al (2015) Sagittal alignment of the spine: what do you need to know? Clin Neurol Neurosurg 139:295–301.  https://doi.org/10.1016/j.clineuro.2015.10.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Glassman SD, Bridwell K, Dimar JR et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029.  https://doi.org/10.1097/01.brs.0000179086.30449.96 CrossRefGoogle Scholar
  5. 5.
    Schwab FJ, Blondel B, Bess S et al (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity. Spine (Phila Pa 1976) 38:803–812.  https://doi.org/10.1097/BRS.0b013e318292b7b9 CrossRefGoogle Scholar
  6. 6.
    Blondel B, Schwab F, Ungar B et al (2012) Impact of magnitude and percentage of global sagittal plane correction on health-related quality of life at 2-years follow-up. Neurosurgery 71:341–348.  https://doi.org/10.1227/NEU.0b013e31825d20c0 CrossRefPubMedGoogle Scholar
  7. 7.
    Hohl JB, Grabowski G, Iii WFD (2011) Cervical deformity in rheumatoid arthritis. YSSPS 23:181–187.  https://doi.org/10.1053/j.semss.2011.04.004 Google Scholar
  8. 8.
    Yamada K, Suzuki A, Takahashi S et al (2015) Severe low back pain in patients with rheumatoid arthritis is associated with Disease Activity Score but not with radiological findings on plain X-rays. Mod Rheumatol 25:56–61.  https://doi.org/10.3109/14397595.2014.924187 CrossRefPubMedGoogle Scholar
  9. 9.
    Helliwell PS, Zebouni LN, Porter G, Wright V (1993) A clinical and radiological study of back pain in rheumatoid arthritis. Br J Rheumatol 32:216–221CrossRefPubMedGoogle Scholar
  10. 10.
    Baykara RA, Bozgeyik Z, Akgul O, Ozgocmen S (2013) Low back pain in patients with rheumatoid arthritis: clinical characteristics and impact of low back pain on functional ability and health related quality of life. J Back Musculoskelet Rehabil 26:367–374.  https://doi.org/10.3233/BMR-130393 CrossRefPubMedGoogle Scholar
  11. 11.
    Kothe R, Klinger R (2007) Impact of low back pain on functional limitations, depressed mood and quality of life in patients with rheumatoid arthritis. Pain 127:103–108.  https://doi.org/10.1016/j.pain.2006.08.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Hasegawa K, Okamoto M, Hatsushikano S et al (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J.  https://doi.org/10.1007/s00586-016-4702-2 Google Scholar
  13. 13.
    Kobayashi T, Atsuta Y, Matsuno T, Takeda N (2004) A longitudinal study of congruent sagittal spinal alignment in an adult cohort. Spine (Phila Pa 1976) 29:671–676.  https://doi.org/10.1097/01.BRS.0000115127.51758.A2 CrossRefGoogle Scholar
  14. 14.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353.  https://doi.org/10.1097/01.brs.0000152379.54463.65 CrossRefGoogle Scholar
  15. 15.
    Gelb DEE, Lenke LGG, Bridwell KHH et al (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine (Phila Pa 1976) 20:1351–1358.  https://doi.org/10.1097/00007632-199520120-00005 CrossRefGoogle Scholar
  16. 16.
    Jun HS, Kim JH, Ahn JH et al (2016) The effect of lumbar spinal muscle on spinal sagittal alignment. Neurosurgery.  https://doi.org/10.1227/NEU.0000000000001269 PubMedGoogle Scholar
  17. 17.
    Masaki M, Ikezoe T, Fukumoto Y et al (2015) Association of sagittal spinal alignment with thickness and echo intensity of lumbar back muscles in middle-aged and elderly women. Arch Gerontol Geriatr 61:197–201.  https://doi.org/10.1016/j.archger.2015.05.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 6736:1–16.  https://doi.org/10.1016/S0140-6736(16)30173-8 Google Scholar
  19. 19.
    Briot K, Rouanet S, Schaeverbeke T et al (2015) The effect of tocilizumab on bone mineral density, serum levels of Dickkopf-1 and bone remodeling markers in patients with rheumatoid arthritis. Jt Bone Spine 82:109–115.  https://doi.org/10.1016/j.jbspin.2014.10.015 CrossRefGoogle Scholar
  20. 20.
    Confavreux CB, Chapurlat RD (2011) Systemic bone effects of biologic therapies in rheumatoid arthritis and ankylosing spondylitis. Osteoporos Int 22:1023–1036.  https://doi.org/10.1007/s00198-010-1462-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Dischereit G, Tarner IH, Müller-ladner U, Lange U (2013) Infliximab improves bone metabolism and bone mineral density in rheumatoid arthritis and ankylosing spondylitis: a prospective 2-year study. Clin Rheumatol.  https://doi.org/10.1007/s10067-012-2128-8 PubMedGoogle Scholar
  22. 22.
    Haugeberg G, Uhlig T, Falch JANA et al (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis results from 394 patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum 43:522–530CrossRefPubMedGoogle Scholar
  23. 23.
    Haugeberg G, Uhlig T, Falch JANA et al (2000) Reduced bone mineral density in male rheumatoid arthritis patients frequencies and associations with demographic and disease variables in ninety-four patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum 43:2776–2784CrossRefPubMedGoogle Scholar
  24. 24.
    Balasubramanian A, Wade SW, Adler RA et al (2016) Glucocorticoid exposure and fracture risk in patients with new-onset rheumatoid arthritis. Osteoporos Int.  https://doi.org/10.1007/s00198-016-3646-z PubMedGoogle Scholar
  25. 25.
    Boling EF (2004) Secondary osteoporosis: for glucocorticoid-induced underlying disease osteoporosis and the risk. Clin Ther 26:1–14CrossRefPubMedGoogle Scholar
  26. 26.
    de Nijs RN, Jacobs JW, Bijlsma JW et al (2001) Prevalence of vertebral deformities and symptomatic vertebral fractures in corticosteroid treated patients with rheumatoid arthritis. Rheumatol (Oxf) 40:1375–1383CrossRefGoogle Scholar
  27. 27.
    Fraser L-A, Adachi JD (2009) Glucocorticoid-induced osteoporosis: treatment update and review. Ther Adv Musculoskelet Dis 1:71–85.  https://doi.org/10.1177/1759720X09343729 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hall GM, Spector TD, Griffin AJ et al (1993) The effect of rheumatoid arthritis and steroid therapy on bone density in postmenopausal women. Arthritis Rheum 36:1510–1516CrossRefPubMedGoogle Scholar
  29. 29.
    Nampei A, Hashimoto J, Koyanagi J et al (2008) Characteristics of fracture and related factors in patients with rheumatoid arthritis. Mod Rheumatol 18:170–176.  https://doi.org/10.1007/s10165-008-0032-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Pereira RM, Carvalho JF, Canalis E (2010) Glucocorticoid-induced osteoporosis in rheumatic diseases. Clinics (Sao Paulo) 65:1197–1205.  https://doi.org/10.1590/S1807-59322010001100024 CrossRefGoogle Scholar
  31. 31.
    Pereira RMR, Freire de Carvalho J (2011) Glucocorticoid-induced myopathy. Jt Bone Spine 78:41–44.  https://doi.org/10.1016/j.jbspin.2010.02.025 CrossRefGoogle Scholar
  32. 32.
    Minetto MA, Lanfranco F, Motta G et al (2011) Steroid myopathy: some unresolved issues. J Endocrinol Invest 34:370–375.  https://doi.org/10.1007/BF03347462 CrossRefPubMedGoogle Scholar
  33. 33.
    Hatakenaka M, Soeda H, Okafuji T et al (2006) Steroid myopathy: evaluation of fiber atrophy with T2 relaxation time—rabbit and human study. Radiology 238:650–657.  https://doi.org/10.1148/radiol.2381041720 CrossRefPubMedGoogle Scholar
  34. 34.
    Kanda F, Okuda S, Matsushita T et al (2001) Steroid myopathy: pathogenesis and effects of growth hormone and insulin-like growth factor-I administration. Horm Res 56(Suppl 1):24–28PubMedGoogle Scholar
  35. 35.
    Arnett FC, Edworthy SM, Bloch DA et al (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 31:315–324.  https://doi.org/10.2169/naika.77.742 CrossRefPubMedGoogle Scholar
  36. 36.
    Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581.  https://doi.org/10.1002/art.27584 CrossRefPubMedGoogle Scholar
  37. 37.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148.  https://doi.org/10.1002/jbmr.5650080915 CrossRefPubMedGoogle Scholar
  38. 38.
    Hu S (1987) Akaike information criterion statistics. Math Comput Simul 29:452.  https://doi.org/10.1016/0378-4754(87)90094-2 Google Scholar
  39. 39.
    Wagenmakers E-J, Farrell S (2004) AIC model selection using Akaike weights. Psychon Bull Rev 11:192–196.  https://doi.org/10.3758/BF03206482 CrossRefPubMedGoogle Scholar
  40. 40.
    Lee HS, Lee JS, Shin K, Goh TS (2017) Correlations between sagittal spinal balance and quality of life in rheumatoid arthritis. Clin Spine Surg 30:412–417Google Scholar
  41. 41.
    Takahashi K, Setoguchi T, Tawaratsumida H et al (2015) Risk of low bone mineral density in patients with rheumatoid arthritis treated with biologics. BMC Musculoskelet Disord.  https://doi.org/10.1186/s12891-015-0732-x Google Scholar
  42. 42.
    Sakai T, Sairyo K, Hamada D (2008) Radiological features of lumbar spinal lesions in patients with rheumatoid arthritis with special reference to the changes around intervertebral discs. Spine J 8:605–611.  https://doi.org/10.1016/j.spinee.2007.03.008 CrossRefPubMedGoogle Scholar
  43. 43.
    Kim SKY, Kang JLW, Isthmic NÁDÁ (2017) Rheumatoid arthritis-associated spinal neuroarthropathy with double-level isthmic spondylolisthesis. Eur Spine J.  https://doi.org/10.1007/s00586-017-5220-6 Google Scholar
  44. 44.
    Dogan SC, Hizmetli S, Hayta E et al (2015) Sarcopenia in women with rheumatoid arthritis. Eur J Rheumatol 2:57–61.  https://doi.org/10.5152/eurjrheum.2015.0038 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Munro R, Capell H, Royal G (1997) Prevalence of low body mass in rheumatoid arthritis: association with the acute phase response. Ann Rheum Dis 56:326–329CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fransen J, van Riel PLCM (2005) The Disease Activity Score and the EULAR response criteria. Clin Exp Rheumatol 23:S93–S99.  https://doi.org/10.1016/j.rdc.2009.10.001 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kazutaka Masamoto
    • 1
  • Bungo Otsuki
    • 1
  • Shunsuke Fujibayashi
    • 1
  • Koichiro Shima
    • 1
  • Hiromu Ito
    • 1
    • 2
  • Moritoshi Furu
    • 1
    • 2
  • Motomu Hashimoto
    • 2
    • 3
  • Masao Tanaka
    • 2
    • 3
  • Stephen Lyman
    • 4
  • Hiroyuki Yoshitomi
    • 1
    • 5
  • Shimei Tanida
    • 1
  • Tsuneyo Mimori
    • 3
  • Shuichi Matsuda
    • 1
  1. 1.Department of Orthopaedic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Department of Advanced Medicine for Rheumatic Diseases, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Department of Rheumatology and Clinical Immunology, Graduate School of MedicineKyoto UniversityKyotoJapan
  4. 4.Healthcare Research InstituteHospital for Special SurgeryNew YorkUSA
  5. 5.Laboratory of Tissue Regeneration, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan

Personalised recommendations