Liljenqvist UR, Allkemper T, Hackenberg L et al (2002) Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J Bone Jt Surg Am 84:359–368
Article
Google Scholar
O’Brien MF, Lenke LG, Mardjetko S et al (2000) Pedicle morphology in thoracic Adolescent Idiopathic Scoliosis: is pedicle fixation an anatomically viable technique? Spine 25:2285–2293
Article
PubMed
Google Scholar
Liu J, Shen J, Zhang J et al (2012) The position of the aorta relative to the spine for pedicle screw placement in the correction of idiopathic scoliosis. J Spinal Disord Tech 25:E103–E107
Article
PubMed
Google Scholar
Sucato DJ, Duchene C (2003) The position of the aorta relative to the spine: a comparison of patients with and without idiopathic scoliosis. J Bone Jt Surg Am 85:1461–1469
Article
Google Scholar
Sarwahi V, Sugarman EP, Wollowick AL et al (2014) Prevalence, distribution and surgical relevance of abnormal pedicles in spines with adolescent idiopathic scoliosis vs. no deformity. A CT based study. J Bone Jt Surg Am 96:e92
Article
Google Scholar
Czerwein J, Sarwahi V, Friend L et al (2007) A new CT cased classification of pedicles in spinal deformity. Spine J 7:115S–116S
Article
Google Scholar
Wollowick A, Sugarman E, Nirenstein L et al (2010) Incidence, distribution and surgical relevance of abnormal pedicles in normal and deformed spines: a CT based study of 6256 pedicles. Spine J 10:S3–S4
Article
Google Scholar
Sarlak AY, Buluc L, Sarisoy HT et al (2008) Placement of pedicle screws in the thoracic idiopathic scoliosis: a magnetic resonance imaging analysis of screw placement relative to structures at risk. Eur Spine J 17:657–662
Article
PubMed
PubMed Central
Google Scholar
Jiang H, Qiu X, Wang W et al (2012) The position of the aorta changes with altered body position in single thoracic adolescent idiopathic scoliosis. A magnetic resonance imaging study. Spine 37:E1054–E1061
Article
PubMed
Google Scholar
Jian J, Qian B, Qiu Y et al (2016) The potential risk of the left subclavian artery injury from excessively long thoracic pedicle screws placed in the proximal thoracic regions of Lenke type 2 adolescent idiopathic scoliosis patients and normal teenagers: an anatomical study. Eur Spine J 25:3282–3287
Article
Google Scholar
Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14
CAS
Article
Google Scholar
Rao G, Brodke DS, Rondina M et al (2002) Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurg 97:223–226
PubMed
Google Scholar
Halm H, Niemeyer T, Link T et al (2000) Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J 9:191–197
CAS
Article
PubMed
PubMed Central
Google Scholar
Lenke LG, Kuklo TR, Ondra S et al (2008) Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine (Phila Pa 1976) 33:1051–1054
Article
Google Scholar
Hamill CL, Lenke LG, Bridwell KH et al (1996) The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Is it warranted? Spine (Phila Pa 1976) 21:1241–1249
CAS
Article
Google Scholar
Barr SJ, Schuette AM, Emans JB (1997) Lumbar pedicle screws versus hooks: results in double major curves in adolescent idiopathic scoliosis. Spine 22:1369–1379
CAS
Article
PubMed
Google Scholar
Lee SM, Suk SI, Chung ER (2004) Direct vertebral rotation: a new technique of three dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29:343–349
Article
PubMed
Google Scholar
Lowenstein JE, Matsumoto H, Vitale MG et al (2007) Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw construct. Spine 32:448–452
Article
PubMed
Google Scholar
Hamilton DK, Smith JS, Sansur CA et al (2011) Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine 36:1218–1228
Article
PubMed
Google Scholar
Suk SI, Kim WJ, Lee SM et al (2001) Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine 26:2049–2057
CAS
Article
PubMed
Google Scholar
Di Silvestre M, Parisini P, Lolli F et al (2007) Complications of thoracic pedicle screws in scoliosis treatment. Spine 32:1655–1661
Article
PubMed
Google Scholar
Suk SI, Lee SM, Chung ER et al (2005) Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis: more than 5-year follow-up. Spine (Phila Pa 1976) 30:1602–1609
Article
Google Scholar
Samdani AF, Ranade A, Sciubba DM et al (2010) Accuracy of free-hand placement of thoracic pedicle screws in adolescent idiopathic scoliosis: how much of a difference does surgeon experience make? Eur Spine J 19:91–95
Article
PubMed
Google Scholar
Kim YJ, Lenke LG, Bridwell KH et al (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 29:333–342 (discussion 42)
Article
PubMed
Google Scholar
Smorgick Y, Millgram MA, Anekstein Y et al (2005) Accuracy and safety of thoracic pedicle screw placement in spinal deformities. J Spinal Disord Tech 18:522–526
Article
PubMed
Google Scholar
Lehman RA Jr, Lenke LG, Keeler KA et al (2007) Computed tomography evaluation of pedicle screws placed in the pediatric deformed spine over an 8-year period. Spine 32:2679–2684
Article
PubMed
Google Scholar
Rajasekaran S, Vidyadhara S, Ramesh P et al (2007) Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine 32:E56–E64
CAS
Article
PubMed
Google Scholar
Li G, Lv G, Passias P et al (2010) Complications associated with thoracic pedicle screws in spinal deformity. Eur Spine J 19:1576–1584
Article
PubMed
PubMed Central
Google Scholar
Etemadifar M, Jamalaldini M (2017) Evaluating accuracy of free-hand pedicle screw insertion in Adolescent Idiopathic Scoliosis using post-operative multi-slice computed tomography scan. Adv Biomed Res 6:19
Article
PubMed
PubMed Central
Google Scholar
Kwan MK, Chiu CK, Gani SMA et al (2017) Accuracy and safety of pedicle screw placement in Adolescent Idiopathic Scoliosis patients. A review of 2020 screws using computed tomography assessment. Spine 42:326–335
Article
PubMed
Google Scholar
Hicks JM, Singla A, Shen FH et al (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine 35:E465–E470
Article
PubMed
Google Scholar
Dede O, Ward WT, Bosch P et al (2014) Using the freehand pedicle screw placement technique in Adolescent Idiopathic Scoliosis surgery. What is the incidence of neurological symptoms secondary to misplaced screws? Spine 39:286–290
Article
PubMed
Google Scholar
Samdani AF, Belin EJ, Bennett JT et al (2013) Unplanned return to the operating room in patients with Adolescent Idiopathic Scoliosis. Are we doing better with pedicle screws? Spine 38:1842–1847
Article
PubMed
Google Scholar
Mac-Thiong J, Parent S, Poitras B et al (2013) Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine 38:229–237
Article
PubMed
Google Scholar
Wagner MR, Flores JB, Sanpera I et al (2011) Aortic abutment after direct vertebral rotation, Plowing of pedicle screws. Spine 36:243–247
Article
PubMed
Google Scholar
Sariyilmaz K, Ozkunt O, Sungur M et al (2017) Esophageal perforation caused by a posterior pedicle screw: a case report. J Pediatr Orthop 37(2):98–101
Article
PubMed
Google Scholar
Liljenqvist UR, Link TM, Halm HFH (2000) Morphometric analysis of thoracic and lumbar vertebrae in idiopathic scoliosis. Spine 25:1247–1253
CAS
Article
PubMed
Google Scholar
Davis CM, Grant CA, Pearcy MJ et al (2017) Is there asymmetry between the concave and convex pedicles in adolescent idiopathic scoliosis? A CT investigation. Clin Orthop Relat Res 475:884–893
Article
PubMed
Google Scholar
Watanabe K, Lenke LG, Matsumoto M et al (2010) A novel pedicle channel classification describing osseous anatomy. How many thoracic scoliosis pedicles have cancellous channels? Spine 35:1836–1842
Article
PubMed
Google Scholar
Chen L, Xu L, Qiu Y et al (2015) The risk of aorta impingement from pedicle screw may increase due to aorta movement during posterior instrumentation in Lenke 5C curve: a computed tomography study. Eur Spine J 24:1481–1489
Article
PubMed
Google Scholar
Heidenreich M, Baghdadi YMK, McIntosh AL et al (2015) At what levels are freehand pedicle screws more frequently malpositioned in children? Spine Deformity 3:332–337
Article
PubMed
Google Scholar
Lee CK, Chan CYW, Gani SMA et al (2017) Accuracy of cannulated pedicle screw versus conventional pedicle screw for extra-pedicular screw placement in dysplastic pedicles without cancellous channel in adolescent idiopathic scoliosis: a computerised tomography (CT) analysis. Eur Spine J. doi:10.1007/s00586-017-5266-5 (epub ahead of print)
Google Scholar
Takeshita K, Maruyama T, Chikuda H et al (2009) Diameter, length and direction of pedicle screws for scoliotic spine: analysis by multiplanar reconstruction of computed tomography. Spine 34:798–803
Article
PubMed
Google Scholar