European Spine Journal

, Volume 26, Issue 10, pp 2616–2628 | Cite as

A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading

  • Kelly R. Wade
  • Meredith L. SchollumEmail author
  • Peter A. Robertson
  • Ashvin Thambyah
  • Neil D. Broom
Original Article



To date, the mechanisms of disc failure have been explored at a microstructural level in relatively simple postures. However, in vivo the disc is known to be subjected to complex loading in compression, bending and shear, and the influence of these factors on the mechanisms of disc failure is yet to be described at a microstructural level. The purpose of this study was to provide a microstructural analysis of the mechanisms of failure in healthy discs subjected to compression while held in a complex posture incorporating physiological amounts of flexion and facet-constrained shear.


30 motion segments from 10 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object, and at a displacement rate of 40 mm/min. Nine of the 30 samples reached the predetermined displacement prior to a reduction in load and were classified as early-stage failures, providing insight into initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy.


Complex postures significantly reduced the load required to cause disc failure than earlier described for flexed postures [8.42 kN (STD 1.22 kN) compared to 9.69 kN (STD 2.56 kN)] and resulted in a very different failure morphology to that observed in either simple flexion or direct compression, involving infiltration of nucleus material in a circuitous path to the annular periphery.


The complex posture as used in this study significantly reduced the load required to cause disc failure, providing further evidence that asymmetric postures while lifting should be avoided if possible.


Ovine lumbar motion segments Compression Complex posture Microstructural analysis Annular disruption Mechanism of herniation Intervertebral disc Herniation Radial fissure Mechanics 



The authors gratefully acknowledge funding support from NuVasive and Medtronic (Australasia).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Jt Surg Am 52:468–497CrossRefGoogle Scholar
  2. 2.
    Marras WS, Lavender SA, Leurgans SE, Rajulu SL, Allread WG, Fathallah FA, Ferguson SA (1993) The role of dynamic three-dimensional trunk motion in occupationally-related low back disorders. The effects of workplace factors, trunk position, and trunk motion characteristics on risk of injury. Spine (Phila Pa 1976) 18(5):617–628CrossRefGoogle Scholar
  3. 3.
    Fathallah FA, Marras WS, Parnianpour M (1998) The role of complex, simultaneous trunk motions in the risk of occupation-related low back disorders. Spine 23(9):1035–1042CrossRefPubMedGoogle Scholar
  4. 4.
    Qasim M, Natarajan RN, An HS, Andersson GBJ (2012) Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: a finite element study. J Biomech 45(11):1934–1940. doi: 10.1016/j.jbiomech.2012.05.022 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Casaroli G, Villa T, Bassani T, Berger-Roscher N, Wilke HJ, Galbusera F (2017) Numerical prediction of the mechanical failure of the intervertebral disc under complex loading conditions. Materials. doi: 10.3390/ma10010031 PubMedPubMedCentralGoogle Scholar
  6. 6.
    Schmidt H, Heuer F, Wilke HJ (2009) Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads. Med Eng Phys 31(6):642–649. doi: 10.1016/j.medengphy.2008.12.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Wade KR, Robertson PA, Thambyah A, Broom ND (2014) How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine 39(13):1018–1028CrossRefPubMedGoogle Scholar
  8. 8.
    Yoganandan N, Maiman DJ, Pintar F, Ray G, Myklebust JB, Sances A Jr, Larson SJ (1988) Microtrauma in the lumbar spine: a cause of low back pain. Neurosurgery 23(2):162–168CrossRefPubMedGoogle Scholar
  9. 9.
    Roaf R (1960) A study of the mechanics of spinal injuries. J Bone Jt Surg Br 42-B(4):810–823Google Scholar
  10. 10.
    Lundin O, Ekström L, Hellström M, Holm S, Swärd L (1998) Injuries in the adolescent porcine spine exposed to mechanical compression. Spine 23(23):2574–2579CrossRefPubMedGoogle Scholar
  11. 11.
    Adams MA (1995) Spine update: mechanical testing of the spine: an appraisal of methodology, results, and conclusions. Spine 20(19):2151–2156CrossRefPubMedGoogle Scholar
  12. 12.
    Adams MA, Hutton WC (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191CrossRefPubMedGoogle Scholar
  13. 13.
    Wade KR, Robertson PA, Thambyah A, Broom ND (2015) ‘Surprise’ loading in flexion increases the risk of disc herniation due to annulus–endplate junction failure: a mechanical and microstructural investigation. Spine 40(12):891–901. doi: 10.1097/BRS.0000000000000888 CrossRefPubMedGoogle Scholar
  14. 14.
    Wilke HJ, Kienle A, Maile S, Rasche V, Berger-Roscher N (2016) A new dynamic six degrees of freedom disc-loading simulator allows to provoke disc damage and herniation. Eur Spine J 25(5):1363–1372. doi: 10.1007/s00586-016-4416-5 CrossRefPubMedGoogle Scholar
  15. 15.
    Berger-Roscher N, Casaroli G, Rasche V, Villa T, Galbusera F, Wilke HJ (2017) Influence of complex loading conditions on intervertebral disc failure. Spine 42(2):E78–E85. doi: 10.1097/BRS.0000000000001699 CrossRefPubMedGoogle Scholar
  16. 16.
    Veres SP, Robertson PA, Broom ND (2009) The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine (Phila Pa 1976) 34(21):2288–2296. doi: 10.1097/BRS.0b013e3181a49d7e CrossRefGoogle Scholar
  17. 17.
    Veres SP, Robertson PA, Broom ND (2010) ISSLS prize winner: how loading rate influences disc failure mechanics: a microstructural assessment of internal disruption. Spine (Phila Pa 1976) 35(21):1897–1908. doi: 10.1097/BRS.0b013e3181d9b69e CrossRefGoogle Scholar
  18. 18.
    Veres SP, Robertson PA, Broom ND (2010) The influence of torsion on disc herniation when combined with flexion. Eur Spine J 19(9):1468–1478. doi: 10.1007/s00586-010-1383-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kelsey JL, Githens PB, White AA (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2(1):61–66CrossRefPubMedGoogle Scholar
  20. 20.
    Reid JE, Meakin JR, Robins SP, Skakle JMS, Hukins DWL (2002) Sheep lumbar intervertebral discs as models for human discs. Clin Biomech 17(4):312–314CrossRefGoogle Scholar
  21. 21.
    Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11(2):137–144CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374CrossRefPubMedGoogle Scholar
  23. 23.
    Race A, Broom ND, Robertson P (2000) Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25(6):662–669CrossRefPubMedGoogle Scholar
  24. 24.
    Lin HS, Liu YK, Adams KH (1978) Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Jt Surg Ser A 60 A(1):41–55CrossRefGoogle Scholar
  25. 25.
    Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A (2013) What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech 46(14):2342–2355. doi: 10.1016/j.jbiomech.2013.07.014 CrossRefPubMedGoogle Scholar
  26. 26.
    Broberg KB (1983) On the mechanical behaviour of intervertebral discs. Spine 8(2):151–165CrossRefPubMedGoogle Scholar
  27. 27.
    van Heeswijk VM, Thambyah A, Robertson PA, Broom ND (2017) Posterolateral disc prolapse in flexion initiated by lateral inner annular failure: an investigation of the herniation pathway. Spine. doi: 10.1097/BRS.0000000000002181 Google Scholar
  28. 28.
    Schmidt H, Häußler K, Wilke HJ, Wolfram U (2015) Structural behavior of human lumbar intervertebral disc under direct shear. J Appl Biomater Funct Mater 13(1):66–71. doi: 10.5301/jabfm.5000176 PubMedGoogle Scholar
  29. 29.
    Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10(6):524–531CrossRefPubMedGoogle Scholar
  30. 30.
    Stefanakis M, Luo J, Pollintine P, Dolan P, Adams MA (2014) ISSLS Prize winner: mechanical influences in progressive intervertebral disc degeneration. Spine 39(17):1365–1372. doi: 10.1097/BRS.0000000000000389 CrossRefPubMedGoogle Scholar
  31. 31.
    Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus. II. Ultimate tensile strength and fatigue life. Eur Spine J 2(4):209–214CrossRefPubMedGoogle Scholar
  32. 32.
    Noguchi M, Gooyers CE, Karakolis T, Noguchi K, Callaghan JP (2016) Is intervertebral disc pressure linked to herniation?: An in vitro study using a porcine model. J Biomech 49(9):1824–1830. doi: 10.1016/j.jbiomech.2016.04.018 CrossRefPubMedGoogle Scholar
  33. 33.
    Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multi-modal, prospective study of 181 subjects. Spine 38(17):1491–1500CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Tissue Mechanics Laboratory, Department of Chemical and Materials EngineeringUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Orthopaedic SurgeryAuckland HospitalAucklandNew Zealand

Personalised recommendations