Skip to main content

Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial

Abstract

Purpose

Spine surgery still remains a challenge for every spine surgeon, aware of the potential serious outcomes of misplaced instrumentation. Though many studies have highlighted that using intraoperative cone beam CT imaging and navigation systems provides higher accuracy than conventional freehand methods for placement of pedicle screws in spine surgery, few studies are concerned about how to reduce radiation exposure for patients with the use of such technology. One of the main focuses of this study is based on the ALARA principle (as low as reasonably achievable).

Method

A prospective randomized trial was conducted in the hybrid operating room between December 2015 and December 2016, including 50 patients operated on for posterior instrumented thoracic and/or lumbar spinal fusion. Patients were randomized to intraoperative 3D acquisition high-dose (standard dose) or low-dose protocol, and a total of 216 pedicle screws were analyzed in terms of screw position. Two different methods were used to measure ionizing radiation: the total skin dose (derived from the dose–area product) and the radiation dose evaluated by thermoluminescent dosimeters on the surgical field.

Results

According to Gertzbein and Heary classifications, low-dose protocol provided a significant higher accuracy of pedicle screw placement than the high-dose protocol (96.1 versus 92%, respectively). Seven screws (3.2%), all implanted with the high-dose protocol, needed to be revised intraoperatively. The use of low-dose acquisition protocols reduced patient exposure by a factor of five.

Conclusion

This study emphasizes the paramount importance of using low-dose protocols for intraoperative cone beam CT imaging coupled with the navigation system, as it at least does not affect the accuracy of pedicle screw placement and irradiates drastically less.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van de Kelft E, Costa F, Van der Planken D, Schils F (2012) A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the O-arm imaging system and StealthStation Navigation. Spine 37:E1580–E1587. doi:10.1097/BRS.0b013e318271b1fa

    Article  PubMed  Google Scholar 

  2. Ammirati M, Salma A (2013) Placement of thoracolumbar pedicle screws using O-arm-based navigation: technical note on controlling the operational accuracy of the navigation system. Neurosurg Rev 36:157–162. doi:10.1007/s10143-012-0421-2 (discussion 162)

    Article  PubMed  Google Scholar 

  3. Schafer S, Nithiananthan S, Mirota DJ et al (2011) Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med Phys 38:4563–4574. doi:10.1118/1.3597566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa F, Dorelli G, Ortolina A et al (2015) Computed tomography-based image-guided system in spinal surgery: state of the art through 10 years of experience. Neurosurgery 11(Suppl 2):59–67. doi:10.1227/NEU.0000000000000587 (discussion 67–68)

    PubMed  Google Scholar 

  5. Barsa P, Frőhlich R, Šercl M et al (2016) The intraoperative portable CT scanner-based spinal navigation: a viable option for instrumentation in the region of cervico-thoracic junction. Eur Spine J 25:1643–1650. doi:10.1007/s00586-016-4476-6

    Article  PubMed  Google Scholar 

  6. Ringel F, Villard J, Ryang Y-M, Meyer B (2014) Navigation, robotics, and intraoperative imaging in spinal surgery. Adv Tech Stand Neurosurg 41:3–22. doi:10.1007/978-3-319-01830-0_1

    Article  PubMed  Google Scholar 

  7. Allam Y, Silbermann J, Riese F, Greiner-Perth R (2013) Computer tomography assessment of pedicle screw placement in thoracic spine: comparison between free hand and a generic 3D-based navigation techniques. Eur Spine J 22:648–653. doi:10.1007/s00586-012-2505-7

    Article  PubMed  Google Scholar 

  8. Oertel MF, Hobart J, Stein M et al (2011) Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine 14:532–536. doi:10.3171/2010.10.SPINE091032

    Article  PubMed  Google Scholar 

  9. Tian N-F, Huang Q-S, Zhou P et al (2011) Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20:846–859. doi:10.1007/s00586-010-1577-5

    Article  PubMed  Google Scholar 

  10. Ling JM, Dinesh SK, Pang BC et al (2014) Routine spinal navigation for thoraco-lumbar pedicle screw insertion using the O-arm three-dimensional imaging system improves placement accuracy. J Clin Neurosci 21:493–498. doi:10.1016/j.jocn.2013.02.034

    Article  PubMed  Google Scholar 

  11. Waschke A, Walter J, Duenisch P et al (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J 22:654–660. doi:10.1007/s00586-012-2509-3

    Article  PubMed  Google Scholar 

  12. Fraser J, Gebhard H, Irie D et al (2010) Iso-C/3-dimensional neuronavigation versus conventional fluoroscopy for minimally invasive pedicle screw placement in lumbar fusion. Minim Invasive Neurosurg MIN 53:184–190. doi:10.1055/s-0030-1267926

    Article  CAS  PubMed  Google Scholar 

  13. Villard J, Ryang Y-M, Demetriades AK et al (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine 39:1004–1009. doi:10.1097/BRS.0000000000000351

    Article  PubMed  Google Scholar 

  14. Jones DP, Robertson PA, Lunt B, Jackson SA (2000) Radiation exposure during fluoroscopically assisted pedicle screw insertion in the lumbar spine. Spine 25:1538–1541

    Article  CAS  PubMed  Google Scholar 

  15. Perisinakis K, Theocharopoulos N, Damilakis J et al (2004) Estimation of patient dose and associated radiogenic risks from fluoroscopically guided pedicle screw insertion. Spine 29:1555–1560

    Article  PubMed  Google Scholar 

  16. Raftopoulos C, Waterkeyn F, Fomekong E, Duprez T (2012) Percutaneous pedicle screw implantation for refractory low back pain: from manual 2D to fully robotic intraoperative 2D/3D fluoroscopy. Adv Tech Stand Neurosurg 38:75–93. doi:10.1007/978-3-7091-0676-1_4

    Article  CAS  PubMed  Google Scholar 

  17. Richter PH, Yarboro S, Kraus M, Gebhard F (2015) One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room. Injury 46(Suppl 4):S129–S134. doi:10.1016/S0020-1383(15)30032-2

    Article  PubMed  Google Scholar 

  18. Kaminski L, Cordemans V, Cartiaux O, Van Cauter M (2017) Radiation exposure to the patients in thoracic and lumbar spine fusion using a new intraoperative cone-beam computed tomography imaging technique: a preliminary study. Eur Spine J. doi:10.1007/s00586-017-4968-z

    Google Scholar 

  19. Kraus MD, Krischak G, Keppler P et al (2010) Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop 468:2419–2429. doi:10.1007/s11999-010-1393-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15:11–14

    Article  CAS  PubMed  Google Scholar 

  21. Heary RF, Bono CM, Black M (2004) Thoracic pedicle screws: postoperative computerized tomography scanning assessment. J Neurosurg 100:325–331

    PubMed  Google Scholar 

  22. Puvanesarajah V, Liauw JA, Lo S-F et al (2014) Techniques and accuracy of thoracolumbar pedicle screw placement. World J Orthop 5:112–123. doi:10.5312/wjo.v5.i2.112

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stecker MS, Balter S, Towbin RB et al (2009) Guidelines for patient radiation dose management. J Vasc Interv Radiol JVIR 20:S263–S273. doi:10.1016/j.jvir.2009.04.037

    Article  PubMed  Google Scholar 

  24. Balter S (2006) Methods for measuring fluoroscopic skin dose. Pediatr Radiol 36(Suppl 2):136–140. doi:10.1007/s00247-006-0193-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Learch TJ, Massie JB, Pathria MN et al (2004) Assessment of pedicle screw placement utilizing conventional radiography and computed tomography: a proposed systematic approach to improve accuracy of interpretation. Spine 29:767–773

    Article  PubMed  Google Scholar 

  26. Beck M, Mittlmeier T, Gierer P et al (2009) Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J 18:1469–1477. doi:10.1007/s00586-009-1050-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pechlivanis I, Kiriyanthan G, Engelhardt M et al (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine 34:392–398. doi:10.1097/BRS.0b013e318191ed32

    Article  PubMed  Google Scholar 

  28. Patil S, Lindley EM, Burger EL et al (2012) Pedicle screw placement with O-arm and stealth navigation. Orthopedics 35:e61–e65. doi:10.3928/01477447-20111122-15

    Article  PubMed  Google Scholar 

  29. Lekovic GP, Potts EA, Karahalios DG, Hall G (2007) A comparison of two techniques in image-guided thoracic pedicle screw placement: a retrospective study of 37 patients and 277 pedicle screws. J Neurosurg Spine 7:393–398. doi:10.3171/SPI-07/10/393

    Article  PubMed  Google Scholar 

  30. Silbermann J, Riese F, Allam Y et al (2011) Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J 20:875–881. doi:10.1007/s00586-010-1683-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleck CJ, Cullilmore I, LaFleur M et al (2016) A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy. Eur Spine J 25:1764–1774. doi:10.1007/s00586-015-4235-0

    Article  PubMed  Google Scholar 

  32. Parker SL, McGirt MJ, Farber SH et al (2011) Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68:170–178. doi:10.1227/NEU.0b013e3181fdfaf4 (discussion 178)

    Article  PubMed  Google Scholar 

  33. Gebhard FT, Kraus MD, Schneider E et al (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31:2024–2027. doi:10.1097/01.brs.0000229250.69369.ac (discussion 2028)

    Article  PubMed  Google Scholar 

  34. Abul-Kasim K, Söderberg M, Selariu E et al (2012) Optimization of radiation exposure and image quality of the cone-beam O-arm intraoperative imaging system in spinal surgery. J Spinal Disord Tech 25:52–58. doi:10.1097/BSD.0b013e318211fdea

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Kaminski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pireau, N., Cordemans, V., Banse, X. et al. Radiation dose reduction in thoracic and lumbar spine instrumentation using navigation based on an intraoperative cone beam CT imaging system: a prospective randomized clinical trial. Eur Spine J 26, 2818–2827 (2017). https://doi.org/10.1007/s00586-017-5229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5229-x

Keywords