Skip to main content

Corrosion of Harrington rod in idiopathic scoliosis: long-term effects



Metal implants have been used to treat adolescent idiopathic scoliosis since the 1960s. Only recently, however, it has the issue of metal-bone breakdown secondary to metal corrosion in situ come to light, raising concerns of possible long-term complications from the resulting metallosis and inflammation of spinal tissues. We present a case of a patient with neurological deficit, pain, and disability with Harrington rod in place for over 30 years, to bring attention to the issue of bio-corrosion of metal implants and its effect on human tissue. We call attention to the need for protocols to better diagnose and treat these patients.


We provide a complete review of the history and clinical manifestations as well as serum metal, X-ray, and CT/myelogram test results.


A 52-year-old female with spinal fusion and Harrington rod presents with pain, lymphedema, disability, and neurological deficits including thoracic outlet syndrome, hyperreflexia, peripheral muscle weakness and atrophy, hypertonicity, Raynaud’s phenomenon, and balance and gait abnormalities. Serum chromium levels were elevated (26.73 nmol). X-rays showed no evidence of rod breakdown. Serial X-rays can demonstrate subtle corrosive changes but were not available. Adhesive arachnoiditis was diagnosed via CT/myelogram.


We hypothesize that bio-corrosion is present in this case and that it is associated with intraspinal metallosis. Trauma secondary to a motor vehicle accident, as well as arachnoiditis, and their possible effects on this case are outlined. Challenges in proper diagnosis and management are discussed.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    Akazawa T, Minami S, Takahashi K, Kotani T, Hanawa T, Moriya H (2005) Corrosion of spinal implants retrieved from patients with scoliosis. J Orthop Sci 10:200–205

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Aulisa L, di Benedetto A, Vinciguerra A, Lorini G, Tranquilli-Leali P (1982) Corrosion of the Harrington’s instrumentation and biological behaviour of the rod-human spine system. Biomaterials 3:246–248

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Cadosch D, Chan E, Gautschi O, Filgueira L (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening—current concepts. J Biomed Mater Res A 91:1252–1262. doi:10.1002/jbm.a.32625

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Cundy WJ, Mascarenhas AR, Antoniou G, Freeman BJC, Cundy PJ (2015) Local and systemic metal ion release occurs intraoperatively during correction and instrumented spinal fusion for scoliosis. J Child Orthop 9:39–43

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cundy TP, Delaney CL, Rackham MD et al (2010) Chromium ion release from stainless steel pediatric scoliosis instrumentation. Spine 35:967–974

    Article  PubMed  Google Scholar 

  6. 6.

    del Rio J, Beguiristain J, Duart J (2007) Metal levels in corrosion of spinal implants. Eur Spine J 16:1055–1061. doi:10.1007/s00586-007-0311-4

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Gornet MF, Burkus JK, Harper ML, Chan FW, Skipor AK, Jacobs JJ (2013) Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty. Eur Spine J 22:741–746. doi:10.1007/s00586-012-2581-8

    Article  PubMed  Google Scholar 

  8. 8.

    Kirkpatrick JS, Venugopalan R, Beck P, Lemons J (2005) Corrosion on spinal implants. J Spinal Disord Tech 18:247–251

    PubMed  Google Scholar 

  9. 9.

    McPhee IB, Swanson CE (2007) Metal ion levels in patients with stainless steel spinal instrumentation. Spine 18:1963–1968

    Article  Google Scholar 

  10. 10.

    Prikryl M, Srivastava SC, Viviani GR, Ives MB, Purdy GR (1989) Role of corrosion in Harrington and Luque rods failure. Biomaterials 10:109–117

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Tezer M, Kuzgun U, Hamzaoglu A, Ozturk C, Kabukcuoglu F, Sirvanci M (2005) Intraspinal metalloma resulting in late paraparesis. Arch Orthop Trauma Surg 125:417–421. doi:10.1007/s00402-005-0802-x

    Article  PubMed  Google Scholar 

  12. 12.

    Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ (2009) Soluble and particulate Co–Cr–Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 27:847–854. doi:10.1002/jor.20826

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Gristina AG (1994) Implant failure and the immune-incompetent fibro-inflammatory zone. Clin Orthop Relat Res 298:106–118

    Google Scholar 

  14. 14.

    St. Pierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jones EA, Finberg RW (2010) Periprosthetic osteolysis: characterising the innate immune response to titanium wear-particles. J Orthop Res 28:1418–1424. doi:10.1002/jor.21149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Torgerson S, Moe G, Jonsson R (1995) Immunocompetent cells adjacent to stainless steel and titanium miniplates and screws. Eur J Oral Sci 103:46–54

    Article  Google Scholar 

  16. 16.

    Takahashi S, Delecrin J, Passuti N (2001) Intraspinal metallosis causing delayed neurologic symptoms after spinal instrumentation surgery. Spine 26:1495–1499

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Beguiristain J, del Rio J, Duart J, Barroso J, Silva A, Villas C (2006) Corrosion and late infection causing delayed paraparesis after spinal instrumentation. J Pediatr Orthop B 15:321–323

    Article  Google Scholar 

  18. 18.

    Drummond J, Tran P, Fary C (2015) Metal on metal hip arthroplasty: a review of adverse reactions and patient management. J Funct Biomater 6:486–499. doi:10.3390/jfb6030486

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Villarraga M, Cripton P, Teti S et al (2006) Wear and corrosion in retrieved thoracolumbar posterior internal fixation. Spine 31:2454–2462

    Article  PubMed  Google Scholar 

  20. 20.

    Yanese M, Sakou T, Taketomi E, Yone K (1995) Transpedicular fixation of the lumbar and lumbosacral spine with screws. Application of the Diapason system. Paraplegia 33:216–218

    Google Scholar 

  21. 21.

    Francois J, Coessens R, Lauweryns P (2007) Early removal of a Maverick disc prosthesis: surgical findings and morphological changes. Acta Orthop Belg 73:122–127

    PubMed  Google Scholar 

  22. 22.

    Peterson HA (2005) Metallic implant removal in children. J Pediatr Orthop 25:107–115

    PubMed  Google Scholar 

  23. 23.

    Goldenberg Y, Tee JW, Salinas-La Rosa CM, Murphy M (2016) Spinal metallosis: a systematic review. Eur Spine J 25:1467–1473. doi:10.1007/s00586-015-4347-6

    Article  PubMed  Google Scholar 

  24. 24.

    Paukkeri EL, Korhonen R, Hamalainen M et al (2016) The inflammatory phenotype in failed metal-on-metal hip arthroplasty correlates with blood metal concentrations. PLoS One 11(5):e0155121. doi:10.1371/journal.pone.0155121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Botolin S, Merritt C, Erickson M (2012) Aseptic loosening of pedicle screw as a result of metal wear debris in a paediatric patient. Spine 38:E38–E42. doi:10.1097/BRS.0b013e3182793e51

    Article  Google Scholar 

  26. 26.

    Jacobs JJ, Scipor AK, Campbell PA, Hallab NJ, Urban RM, Amstutz HC (2004) Can metal levels be used to monitor metal-on-metal hip arthroplasties? J Arthroplast 19:59–65. doi:10.1016/j.arth.2004.09.019

    Article  Google Scholar 

  27. 27.

    Chang JD, Lee SS, Hur M, Seo EM, Chung YK, Lee CJ (2005) Revision total hip arthroplasty in hip joints with metallosis. J Arthroplast 20:568–573. doi:10.1016/j.arth.2005.04.001

    Article  Google Scholar 

  28. 28.

    Levine BR, Hsu AR, Skipor AK et al (2013) Ten-year outcome of serum metal ion levels after primary total hip arthroplasty. J Bone Joint Surg Am 95:512–518. doi:10.2106/JBJS.L.00471

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Engh CA, MacDonald SJ, Sritulanondha S, Thompson A, Naudie D, Engh CA (2009) Metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111. doi:10.1007/s11999-008-0540-9

    Article  PubMed  Google Scholar 

  30. 30.

    Munir S, Oliver RA, Zicat B, Walter WL, Walter WK, Walsh WR (2016) The histological and elemental characterisation of corrosion particles from taper junctions. Bone Joint Res 5:370–378. doi:10.1302/2046-3758.59.2000507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Sampson B, Hart A (2012) Clinical usefulness of blood metal measurements to assess the failure of metal-on-metal hip implants. Ann Clin Biochem 49:118–131. doi:10.1258/acb.2011.011141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Savarino L, Greggi T, Martikos K, Lolli F, Greco M, Baldini N (2015) Long-term systemic metal distribution in patients with stainless steel spinal instrumentation. J Spinal Disord Tech 28:114–118

    Article  PubMed  Google Scholar 

  33. 33.

    Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoch M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82:457–477

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Rackham M, Cundy T, Antoniou G, Freeman BJC, Sutherland LM, Cundy PJ (2010) Predictors of serum chromium levels after stainless steel posterior spinal instrumentation for adolescent idiopathic scoliosis. Spine 35:975–982

    Article  PubMed  Google Scholar 

  35. 35.

    Chalmers BP, Perry KI, Taunton MJ, Mabry TM, Abdel MP (2016) Diagnosis of adverse local tissue reactions following metal-on-metal hip arthroplasty. Curr Rev Musculoskelet Med 9:67–74. doi:10.1007/s12178-016-9321-3

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kim YJ, Kassab F, Berven SH et al (2005) Serum levels of nickel and chromium after instrumented posterior spinal arthrodesis. Spine 30:923–926

    Article  PubMed  Google Scholar 

  37. 37.

    Cundy TP, Cundy WJ, Antoniou G, Sutherland LM, Freeman BJC, Cundy PJ (2014) Serum titanium, niobium, and aluminum levels two years following instrumented spinal fusion in children: does implant surface area predict serum metal ion levels? Eur Spine J 23:2393–2400. doi:10.1007/s00586-014-3279-x

    Article  PubMed  Google Scholar 

  38. 38.

    Cundy TP, Antoniou G, Sutherland LM, Freeman BJC, Cundy PJ (2013) Serum titanium, niobium, and aluminum levels after instrumented spinal arthrodesis in children. Spine 38:564–570. doi:10.1097/BRS.0b013e3182741961

    Article  PubMed  Google Scholar 

  39. 39.

    Keegan G, Learmonth I, Case C (2007) Orthopaedic metals and their potential toxicity in the arthroplasty patient. J Bone Joint Surg Br 89:567–573. doi:10.1302/0301-620X.89B5.18903

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Zeh A, Becker C, Planert M, Lattke P, Wohlrab D (2009) Time-dependent release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick type artificial lumbar disc. Arch Orthop Trauma Surg 129:741–746. doi:10.1007/s00402-008-0677-8

    Article  PubMed  Google Scholar 

Download references


The author thanks Ashlee-Ann E. Pigford, M.Sc., who was very helpful in guiding me through the process of writing.

Author information



Corresponding author

Correspondence to Tanya Crowell.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sherman, B., Crowell, T. Corrosion of Harrington rod in idiopathic scoliosis: long-term effects. Eur Spine J 27, 298–302 (2018).

Download citation


  • Scoliosis
  • Spinal implants
  • Corrosion
  • Metal ions
  • Metallosis