Skip to main content

A histomorphometric study of the cancellous spinal process bone in adolescent idiopathic scoliosis

Abstract

Purpose

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity with increased risk of osteopenia of unknown etiology. This study examined the dynamic histomorphometry of AIS patients to gain insight into the underlying pathogenesis of bone metabolism changes in AIS.

Methods

Bone histomorphometry of the spinous process of the 12th thoracic vertebra was analyzed in 33 AIS patients and compared to age-matched normative data. Patients were classified into bone turnover subgroups, based on bone formation rate.

Results

Bone volume was subnormal in 67% of AIS patients, but normal in 33%. Bone turnover was high in 76% of the patients, normal in 9%, and low in 15%. Compared to those in the low-turnover group, the high-turnover group patients were taller and had higher TRAP5b values.

Conclusions

Bone histomorphometry indicated that bone fragility and abnormal bone turnover were common in AIS patients. These abnormalities might contribute to the poor bone status and etiology in AIS.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Cheng JC, Guo X (1997) Osteoporosis in adolescent idiopathic scoliosis—a primary problem or secondary to the spinal deformity? Spine 22:1716–1721

    CAS  Article  PubMed  Google Scholar 

  2. Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis: a longitudinal follow-up study. Spine 24:1218–1222

    CAS  Article  PubMed  Google Scholar 

  3. Cheng JC, Tang SP, Guo X, Chan CW, Qin L (2001) Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. Spine 26:19–23

    Article  Google Scholar 

  4. Cheung CS, Lee WT, Tse YK, Lee KM, Guo X, Qin L, Cheng JC (2006) Generalized osteopenia in adolescent idiopathic scoliosis-association with abnormal pubertal growth, bone turnover, and calcium intake? Spine 31:330–338

    Article  PubMed  Google Scholar 

  5. Cheng JC, Qin L, Cheung CS, Sher AH, Lee KM, Ng SW, Guo X (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15:1587–1595

    CAS  Article  PubMed  Google Scholar 

  6. Hung VWY, Cheung CSK, Lam TP, Ng BK, Tse YK, Guo X, Lee KM, Cheng JC (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Jnt Surg Am 87:2709–2916

    CAS  Google Scholar 

  7. Lee WT, Cheung CS, Tse YK, Guo X, Qin L, Lam TP, Ng BK, Cheng JC (2005) Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporos Int 16:1924–1932

    Article  PubMed  Google Scholar 

  8. Batista R, Martins DE, Hayashi LF (2014) Association between vitamin D serum levels and adolescent idiopathic scoliosis. Scoliosis 9(Suppl 1):O45

    Article  PubMed Central  Google Scholar 

  9. Gozdzialska A, Jaskiewicz J, Knapik-Czajka M, Drag J, Gawlik M, Ciesla M, Kulis A, Zarzycki D (2016) Association of calcium and phosphate balance, vitamin D, PTH, and calcitonin in patients with adolescent idiopathic scoliosis. Spine 41:693–697

    Article  PubMed  Google Scholar 

  10. Suh KT, Eun IS, Lee JS (2010) Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 19:1545–1550

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nowak R, Szota J, Mazurek U (2012) Vitamin D receptor gene (VDR) transcripts in bone, cartilage, muscles and blood and microarray analysis of vitamin D responsive genes expression in paravertebral muscles of juvenile and adolescent idiopathic scoliosis patients. BMC Musculoskelet Disord 13:259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Cui ZQ, Luo TB, Liu L (2016) Correlations of VDR and VDBP genetic polymorphisms with susceptibility to adolescent idiopathic scoliosis and efficacy of brace treatment. Genomics 108:194–200

    CAS  Article  PubMed  Google Scholar 

  13. Wang ZW, Lee WY, Lam TP, Yip BH, Yu FW, Yu WS, Zhu F, Ng BK, Qiu Y, Cheng JC (2016) Defining the bone morphometry, micro-architecture and volumetric density profile in osteopenic vs non-osteopenic adolescent idiopathic scoliosis. Eur Spine J. doi:10.1007/s00586-016-442-7

    Google Scholar 

  14. Risser JC (1958) The iliac apophysis: an invaluable sign in the management of scoliosis. Clin Orthop Relat Res 11:111–119

    CAS  Google Scholar 

  15. Cobb JR (1969) Outline for the study of scoliosis. instructional course lectures. J Am Acad Orthop Surg 51:223–229

    Google Scholar 

  16. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Jnt Surg Am 83:1169–1181

    Article  Google Scholar 

  17. Parfitt AM, Drezner MK, Glourieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610

    CAS  Article  PubMed  Google Scholar 

  18. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:1–16

    Article  Google Scholar 

  19. Inokuchi M, Matsuo N, Takayama JI, Hasegawa T (2011) Tracking of BMI in Japanese children from 6 to 18 years of age: Reference values for annual BMI incremental change and proposal for size of increment indicative of risk for obesity. Ann Hum Biol 38:146–149

    Article  PubMed  Google Scholar 

  20. Nishiyama S, Okada T (2001) Bone mineral density in Japanese children and adolescents. Clin Pediatr Endocrinol 10:113–120

    Article  Google Scholar 

  21. Classidi JT (1999) Osteopenia and osetoporosis in children. Clin Exp Rheumatol 17:245–250

    Google Scholar 

  22. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Högler W (2007) Sex- and age- specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449

    CAS  Article  PubMed  Google Scholar 

  23. Glorieux FH, Travers R, Taylor A, Jr Bowen, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    CAS  Article  PubMed  Google Scholar 

  24. Ishida K, Aota Y, Mitsugi N, Kono M, Higashi T, Kawai T, Yamada K, Niimura T, Kaneko K, Tanabe H, Ito Y, Katsuhata T, Saito T (2015) Relationship between bone density and bone metabolism in adolescent idiopathic scoliosis. Scoliosis 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Suh KT, Lee SS, Hwang SH, Kim S-J, Lee JS (2007) Elevated soluble receptor activator of nuclear factor-kappaB ligand and reduced bone mineral density in patients with adolescent idiopathic scoliosis. Eur Spine J 16:1563–1569

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kulis A, Goździalska A, Drąg J, Jaskiewicz J, Knapik-Czajka M, Lipik E, Zarzycki D (2015) Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int Orthop 39:1227–1236

    Article  PubMed  Google Scholar 

  27. Raubenheimer EJ, Van Heerden WF, Potgieter D, Golele R (1997) Static and dynamic bone changes in hospitalized patients suffering from rickets—a histomorphometric study. Histopathology 31:12–17

    CAS  Article  PubMed  Google Scholar 

  28. Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH (2000) Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 15:957–963

    CAS  Article  PubMed  Google Scholar 

  29. Rauch F, Travers R, Norman ME, Taylor A, Parfitt AM, Glorieux FH (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89

    CAS  Article  PubMed  Google Scholar 

  30. Aota Y, Terayama H, Saito T, Itoh M (2013) Pinealectomy in a broiler chicken model impairs endochondral ossification and induces rapid cancellous bone loss. Spine J 13:1607–1616

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Akemi Ito (Ito Bone Histomorphometry Institute) for providing technical assistance with the bone histomorphometry studies and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Aota.

Ethics declarations

Funding

This work was partly supported by a 2013–2014 Japan Osteoporosis Foundation Grant-in-Aid for bone disease research.

Conflict of interest

Hironori Tanabe, Yoichi Aota, Naoyuki Nakamura, and Tomoyuki Saito declare that they have no conflict of interest.

Research involving human participants

This study was approved by the relevant institutional review boards (25–02 and 77–08).

Informed consent

All children and their parents provided informed consent.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanabe, H., Aota, Y., Nakamura, N. et al. A histomorphometric study of the cancellous spinal process bone in adolescent idiopathic scoliosis. Eur Spine J 26, 1600–1609 (2017). https://doi.org/10.1007/s00586-017-4974-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-4974-1

Keywords

  • Adolescent idiopathic scoliosis
  • Bone turnover
  • Histomorphometry
  • Osteopenia
  • Osteoporosis