ISSLS PRIZE IN CLINICAL SCIENCE 2017: Is infection the possible initiator of disc disease? An insight from proteomic analysis

Abstract

Study design

Proteomic and 16S rDNA analysis of disc tissues obtained in vivo.

Objective

To address the controversy of infection as an aetiology for disc disorders through protein profiling.

Summary of background data

There is raging controversy over the presence of bacteria in human lumbar discs in vivo, and if they represent contamination or infection. Proteomics can provide valuable insight by identifying proteins signifying bacterial presence and, also host defence response proteins (HDRPs), which will confirm infection.

Methods

22 discs (15-disc herniations (DH), 5-degenerate (DD), 2-normal in MRI (NM) were harvested intraoperatively and immediately snap frozen. Samples were pooled into three groups and proteins extracted were analysed with liquid chromatography-tandem mass spectrometry (LC–MS/MS). Post identification, data analysis was performed using Uniprotdb, Pantherdb, Proteome discoverer and STRING network. Authentication for bacterial presence was performed by PCR amplification of 16S rDNA.

Results

LC–MS/MS analysis using Orbitrap showed 1103 proteins in DH group, compared to 394 in NM and 564 in DD. 73 bacterial specific proteins were identified (56 specific for Propionibacterium acnes; 17 for Staphylococcus epidermidis). In addition, 67 infection-specific HDRPs, unique or upregulated, such as Defensin, Lysozyme, Dermcidin, Cathepsin-G, Prolactin-Induced Protein, and Phospholipase-A2, were identified confirming presence of infection. Species-specific primers for P. acnes exhibited amplicons at 946 bp (16S rDNA) and 515 bp (Lipase) confirming presence of P. acnes in both NM discs, 11 of 15 DH discs, and all five DD discs. Bioinformatic search for protein–protein interactions (STRING) documented 169 proteins with close interactions (protein clustering co-efficient 0.7) between host response and degenerative proteins implying that infection may initiate degradation through Ubiquitin C.

Conclusion

Our study demonstrates bacterial specific proteins and host defence proteins to infection which strengthen the hypothesis of infection as a possible initiator of disc disease. These results can lead to a paradigm shift in our understanding and management of disc disorders.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Stirling A, Worthington T, Rafiq M, Lambert PA, Elliott TS (2001) Association between sciatica and Propionibacterium acnes. Lancet 357(9273):2024–2025

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22(4):697–707

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Agarwal V, Golish SR, Alamin TF (2011) Bacteriologic culture of excised intervertebral disc from immunocompetent patients undergoing single level primary lumbar microdiscectomy. J Spinal Disord Tech 24(6):397–400

    Article  PubMed  Google Scholar 

  4. 4.

    Arndt J, Charles YP, Koebel C, Bogorin I, Steib JP (2012) Bacteriology of degenerated lumbar intervertebral disks. J Spinal Disord Tech 25(7):E211–E216

    Article  PubMed  Google Scholar 

  5. 5.

    Zhou Z, Chen Z, Zheng Y, Cao P, Liang Y, Zhang X, Wu W, Xiao J, Qiu S (2015) Relationship between annular tear and presence of Propionibacterium acnes in lumbar intervertebral disc. Eur Spine J 24(11):2496–2502

    Article  PubMed  Google Scholar 

  6. 6.

    Fritzell P, Bergström T, Welinder-Olsson C (2004) Detection of bacterial DNA in painful degenerated spinal discs in patients without signs of clinical infection. Eur Spine J 13(8):702–706

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kowalski TJ, Berbari EF, Huddleston PM, Steckelberg JM, Osmon DR (2007) Propionibacterium acnes vertebral osteomyelitis: seek and ye shall find? Clin Orthop Relat Res 1(461):25–30

    Google Scholar 

  8. 8.

    Coscia MF, Denys GA, Wack MF (2016) Propionibacterium acnes, coagulase negative Staphylococcus, and the “biofilm-like” intervertebral disc. Spine (Phila Pa 1976) 41(24):1860–1865

    Article  Google Scholar 

  9. 9.

    Capoor MN, Ruzicka F, Machackova T, Jancalek R, Smrcka M, Schmitz JE, Hermanova M, Sana J, Michu E, Baird JC, Ahmed FS (2016) Prevalence of Propionibacterium acnes in intervertebral discs of patients undergoing lumbar microdiscectomy: a prospective cross-sectional study. PLoS One 11(8):e0161676

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Urquhart DM, Zheng Y, Cheng AC, Rosenfeld JV, Chan P, Liew S, Hussain SM, Cicuttini FM (2015) Could low grade bacterial infection contribute to low back pain? A systematic review. BMC Med 13(1):1

    Article  Google Scholar 

  11. 11.

    Chen Z, Cao P, Zhou Z, Yuan Y, Jiao Y, Zheng Y (2016) Overview: the role of Propionibacterium acnes in nonpyogenic intervertebral discs. Int Orthop 40:1291–1298

    Article  PubMed  Google Scholar 

  12. 12.

    Ganko R, Rao PJ, Phan K, Mobbs RJ (2015) Can bacterial infection by low virulent organisms be a plausible cause for symptomatic disc degeneration? A systematic review. Spine 40(10):E587–E592

    Article  PubMed  Google Scholar 

  13. 13.

    Wedderkopp N, Thomsen K, Manniche C, Kolmos HJ, Secher Jensen T, Leboeuf Yde C (2009) No evidence for presence of bacteria in modic type I changes. Acta Radiol 50(1):65–70

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Ben-Galim P, Rand N, Giladi M, Schwartz D, Ashkenazi E, Millgram M, Dekel S, Floman Y (2006) Association between sciatica and microbial infection: true infection or culture contamination? Spine 31(21):2507–2509

    Article  PubMed  Google Scholar 

  15. 15.

    Valkova N, Yunis R, Mak SK, Kang K, Kültz D (2005) Nek8 mutation causes overexpression of galectin-1, sorcin, and vimentin and accumulation of the major urinary protein in renal cysts of jck mice. Mol Cell Proteomics 4(7):1009–1018

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ericsson C, Nistér M (2011) Protein extraction from solid tissue. In: Dillner J (ed) Methods in biobanking, vol 675. Humana Press, New york, pp 307–312

  17. 17.

    Anderson BL, Berry RW, Telser A (1983) A sodium dodecyl sulfate-polyacrylamide gel electrophoresis system that separates peptides and proteins in the molecular weight range of 2500 to 90,000. Anal Biochem 132(2):365–375

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fan H, Gulley ML (2001) DNA extraction from paraffin-embedded tissues. In: Killeen A (ed) Molecular pathology protocols, vol 49. Humana Press, New york, pp 1–4

  19. 19.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol Bio Syst 3(7):458–465

    CAS  Google Scholar 

  21. 21.

    Hor L, Dobson RC, Downton MT, Wagner J, Hutton CA, Perugini MA (2013) Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 288(13):9238–9248

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Bridges HR, Birrell JA, Hirst J (2011) The mitochondrial-encoded subunits of respiratory complex I (NADH: ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem Soc Trans 39(3):799–806

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Li Y, Park JS, Deng JH, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38(5–6):283–291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Li Y, Hodak M, Bernholc J (2015) Enzymatic mechanism of copper-containing nitrite reductase. Biochemistry 54(5):1233–1242

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Shiro Y (2012) Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes. Biochim Biophys Bioenerg 1817(10):1907–1913

    CAS  Article  Google Scholar 

  26. 26.

    Fath MJ, Kolter R (1993) ABC transporters: bacterial exporters. Microbiol Rev 57(4):995–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Saurin W, Hofnung M, Dassa E (1999) Getting in or out: early segregation between importers and exporters in the evolution of ATP-binding cassette (ABC) transporters. J Mol Evol 48(1):22–41

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Otaka E, Itoh T, Osawa S (1968) Ribosomal proteins of bacterial cells: strain-and species-specificity. J Mol Biol 33(1):93–107

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P (2001) The biosynthesis of nicotinamide adenine dinucleotides in bacteria. Vitam Horm 31(61):103–119

    Article  Google Scholar 

  30. 30.

    Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Taylor WE, Straus DB, Grossman AD, Burton ZF, Gross CA, Burgess RR (1984) Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. Cell 38(2):371–381

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Edgerton M, Koshlukova SE, AraujoMW Patel RC, Dong J, Bruenn JA (2000) Salivary histatin 5 and human neutrophil defensin 1 kill Candida albicans via shared pathways. Antimicrob Agents Chemother 44(12):3310–3316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chertov O, Michiel DF, Xu L, Wang JM, Tani K, Murphy WJ, Longo DL, Taub DD, Oppenheim JJ (1996) Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271(6):2935–2940

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Schittek B (2012) The multiple facets of dermcidin in cell survival and host defense. J Innate Immun 4(4):349–360

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Burian M, Schittek B (2015) The secrets of dermcidin action. Int J Med Microbiol 305(2):283–286

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Umadat V, Ihedioha O, Shiu R, Uzonna J, Myal Y (2013) The prolactin-inducible-protein (PIP): a regulatory molecule in adaptive and innate immunity. Open J Immunol 11:2013

    Google Scholar 

  37. 37.

    Melrose J, Ghosh P, Taylor TK (1989) Lysozyme, a major low-molecular-weight cationic protein of the intervertebral disc, which increases with ageing and degeneration. Gerontology 35(4):173–180

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Anderson DG, Tannoury C (2005) Molecular pathogenic factors in symptomatic disc degeneration. Spine J 5(6):S260–S266

    Article  Google Scholar 

  39. 39.

    Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125(2):S41–S52

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yu CY, Belt KT, Giles CM, Campbell RD, Porter RR (1986) Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J 5(11):2873

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Scuderi P, Nez PA, Duerr ML, Wong BJ, Valdez CM (1991) Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol 135(2):299–313

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kepler CK, Ponnappan RK, Tannoury CA, Risbud MV, Anderson DG (2013) The molecular basis of intervertebral disc degeneration. Spine J 13(3):318–330

    Article  PubMed  Google Scholar 

  43. 43.

    Saal JS, Franson RC, Dobrow R, Saal JA, White AH, Goldthwaite N (1990) High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 15(7):674–678

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Franson RC, Saal JS, Saal JA (1992) Human disc phospholipase A2 is inflammatory. Spine 17(6):S129–S132

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Nishihira J (2000) Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J Interferon Cytokine Res 20(9):751–762

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 3(10):791–800

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Schröder NW, Heine H, Alexander C, Manukyan M, Eckert J, Hamann L, Göbel UB, Schumann RR (2004) Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. J Immunol 173(4):2683–2691

    Article  PubMed  Google Scholar 

  48. 48.

    Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204(1):47–54

    Article  PubMed  Google Scholar 

  49. 49.

    Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine 25(23):3005–3013

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Benbrook DM, Long A (2012) Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol 34(3):286–297

    CAS  PubMed  Google Scholar 

  51. 51.

    Roberts JL, Tavallai M, Nourbakhsh A, Fidanza A, Cruz-Luna T, Smith E, Siembida P, Plamondon P, Cycon KA, Doern CD, Booth L (2015) GRP78/Dna K is a target for nexavar/stivarga/votrient in the treatment of human malignancies, viral infections and bacterial diseases. J Cell Physiol 230(10):2552–2578

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Zhang YG, Guo X, Sun Z, Jia G, Xu P, Wang S (2010) Gene expression profiles of disc tissues and peripheral blood mononuclear cells from patients with degenerative discs. J Bone Miner Metab 28(2):209–219

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Minarowska A, Minarowski L, Karwowska A, Gacko M (2007) Regulatory role of cathepsin D in apoptosis. Folia Histochem Cytobiol 45(3):159–163

    CAS  PubMed  Google Scholar 

  54. 54.

    Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, Detmar M (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci 96(26):14888–14893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M (2004) HtrA1 serine protease inhibits signaling mediated by Tgfβ family proteins. Development 131(5):1041–1053

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Heldin CH, Westermark B (1990) Platelet-derived growth factor: mechanism of action and possible in vivo function. Cell Regul 1(8):555

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Libert C, Brouckaert P, Fiers W (1994) Protection by alpha 1-acid glycoprotein against tumor necrosis factor-induced lethality. J Exp Med 180(4):1571–1575

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Moore DF, Rosenfeld MR, Gribbon PM, Winlove CP, Tsai CM (1997) Alpha-1-acid (AAG, orosomucoid) glycoprotein: interaction with bacterial lipopolysaccharide and protection from sepsis. Inflammation 21(1):69–82

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Roughley PJ, Mort JS (2014) The role of aggrecan in normal and osteoarthritic cartilage. J Exp Orthop 1(1):1

    Article  Google Scholar 

  60. 60.

    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Aubin GG, Portillo ME, Trampuz A, Corvec S (2014) Propionibacterium acnes, an emerging pathogen: from acne to implant-infections, from phylotype to resistance. Medecine et maladies infectieuses 44(6):241–250

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27(3):419–440

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL (2007) hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol 189(5):2055–2062

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29(23):2700–2709

    Article  PubMed  Google Scholar 

  65. 65.

    Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine 38(17):1491–1500

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 27(23):2631–2644

    Article  PubMed  Google Scholar 

  67. 67.

    Rajasekaran S, Babu JN, Arun R, Armstrong BR, Shetty AP, Murugan S (2004) ISSLS prize winner: a study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine 29(23):2654–2667

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Dessinioti C, Katsambas AD (2010) The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol 28(1):2–7

    Article  PubMed  Google Scholar 

  69. 69.

    Burkhart CG, Burkhart CN, Lehmann PF (1999) Acne: a review of immunologic and microbiologic factors. Postgrad Med J 75(884):328–331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Li B, Dong Z, Wu Y, Zeng J, Zheng Q, Xiao B, Cai X, Xiao Z (2016) Association between lumbar disc degeneration and Propionibacterium acnes infection: clinical research and preliminary exploration of animal experiment. Spine 41(13):E764–E769

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Ms M Sujitha for assistance in LC–MS experiments, Dr. Velayudham Dinesh and Dr. Gopalkrishnan Chellappa for assistance in the bioinformatics. This study was supported by Ganga orthopaedic research and education foundation, Coimbatore, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Rajasekaran.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest.

Ethical statement

Written informed consent was obtained from all participants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajasekaran, S., Tangavel, C., Aiyer, S.N. et al. ISSLS PRIZE IN CLINICAL SCIENCE 2017: Is infection the possible initiator of disc disease? An insight from proteomic analysis. Eur Spine J 26, 1384–1400 (2017). https://doi.org/10.1007/s00586-017-4972-3

Download citation

Keywords

  • Low back pain
  • Disc degeneration
  • Disc herniation
  • Disc infections
  • Proteomics
  • LC–MS/MS
  • Propionibacterium
  • Staphylococcus
  • rDNA
  • Modic change
  • Inflammation