European Spine Journal

, Volume 26, Issue 3, pp 679–690 | Cite as

Outcome of L5 radiculopathy after reduction and instrumented transforaminal lumbar interbody fusion of high-grade L5–S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring

  • Ralph T. Schär
  • Martin Sutter
  • Anne F. Mannion
  • Andreas Eggspühler
  • Dezsö Jeszenszky
  • Tamas F. Fekete
  • Frank Kleinstück
  • Daniel Haschtmann
Original Article



To evaluate the incidence and course of iatrogenic L5 radiculopathy after reduction and instrumented fusion of high-grade L5–S1 isthmic spondylolisthesis and the role of intraoperative neurophysiological monitoring (IONM).


Consecutive patients treated for high-grade spondylolisthesis with IONM from 2005 to 2013 were screened for eligibility. Prospectively collected clinical and surgical data as well as radiographic outcomes were analyzed retrospectively. Patients completed the multidimensional Core Outcome Measures Index (COMI) before and at 3, 12, and 24 months after surgery.


Seventeen patients were included, with a mean age of 26.3 (±9.5) years. Mean preoperative L5–S1 slip was 72% (±21%) and was reduced to 19% (±13%) postoperatively. Mean loss of reduction at last follow-up [mean 19 months (±14, range 3–48 months)] was 3% (±4.3%). Rate of new L5 radiculopathy with motor deficit (L5MD) after surgery was 29% (five patients). Four patients fully recovered after 3 months, one patient was lost to neurologic follow-up. IONM sensitivity and specificity for postoperative L5MD was 20 and 100%, respectively. COMI, back pain and leg pain scores showed significant (p < 0.001) improvements at 3 months postoperatively, which were retained up to 24 months postoperatively.


Transient L5 radiculopathy after reduction and instrumented fusion of high-grade spondylolisthesis is frequent. With IONM the risk of irreversible L5 radiculopathy is minimal. If IONM signal changes recover, full clinical recovery is expected within 3 months. Overall, patient-reported outcome of reduction and instrumented fusion of high-grade spondylolisthesis showed clinically important improvement.


Spondylolisthesis Intraoperative neurophysiological monitoring Lumbar fusion Complication Patient-rated outcome 


Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest concerning the materials and methods used in this study or the findings specified in this paper.


  1. 1.
    Moller H, Hedlund R (2000) Surgery versus conservative management in adult isthmic spondylolisthesis—a prospective randomized study: part 1. Spine 25:1711–1715CrossRefPubMedGoogle Scholar
  2. 2.
    Helenius I, Lamberg T, Osterman K, Schlenzka D, Yrjonen T, Tervahartiala P, Seitsalo S, Poussa M, Remes V (2006) Posterolateral, anterior, or circumferential fusion in situ for high-grade spondylolisthesis in young patients: a long-term evaluation using the Scoliosis Research Society questionnaire. Spine 31:190–196CrossRefPubMedGoogle Scholar
  3. 3.
    Poussa M, Schlenzka D, Seitsalo S, Ylikoski M, Hurri H, Osterman K (1993) Surgical treatment of severe isthmic spondylolisthesis in adolescents. Reduction or fusion in situ. Spine 18:894–901CrossRefPubMedGoogle Scholar
  4. 4.
    Poussa M, Remes V, Lamberg T, Tervahartiala P, Schlenzka D, Yrjonen T, Osterman K, Seitsalo S, Helenius I (2006) Treatment of severe spondylolisthesis in adolescence with reduction or fusion in situ: long-term clinical, radiologic, and functional outcome. Spine 31:583–590. doi: 10.1097/01.brs.0000201401.17944.f7 (discussion 591–582) CrossRefPubMedGoogle Scholar
  5. 5.
    Tiusanen H, Schlenzka D, Seitsalo S, Poussa M, Osterman K (1996) Results of a trial of anterior or circumferential lumbar fusion in the treatment of severe isthmic spondylolisthesis in young patients. J Pediatr Orthop B 5:190–194CrossRefPubMedGoogle Scholar
  6. 6.
    Grzegorzewski A, Kumar SJ (2000) In situ posterolateral spine arthrodesis for grades III, IV, and V spondylolisthesis in children and adolescents. J Pediatr Orthop 20:506–511PubMedGoogle Scholar
  7. 7.
    Ishikawa S, Kumar SJ, Torres BC (1994) Surgical treatment of dysplastic spondylolisthesis. Results after in situ fusion. Spine 19:1691–1696CrossRefPubMedGoogle Scholar
  8. 8.
    Lance EM (1966) Treatment of severe spondylolisthesis with neural involvement. A report of two cases. J Bone Jt Surg Am 48:883–891CrossRefGoogle Scholar
  9. 9.
    Lenke LG, Bridwell KH, Bullis D, Betz RR, Baldus C, Schoenecker PL (1992) Results of in situ fusion for isthmic spondylolisthesis. J Spinal Disord 5:433–442CrossRefPubMedGoogle Scholar
  10. 10.
    Remes V, Lamberg T, Tervahartiala P, Helenius I, Schlenzka D, Yrjonen T, Osterman K, Seitsalo S, Poussa M (2006) Long-term outcome after posterolateral, anterior, and circumferential fusion for high-grade isthmic spondylolisthesis in children and adolescents: magnetic resonance imaging findings after average of 17-year follow-up. Spine 31:2491–2499. doi: 10.1097/01.brs.0000239218.38489.db CrossRefPubMedGoogle Scholar
  11. 11.
    Seitsalo S, Osterman K, Hyvarinen H, Schlenzka D, Poussa M (1990) Severe spondylolisthesis in children and adolescents. A long-term review of fusion in situ. J Bone Jt Surg Br 72:259–265CrossRefGoogle Scholar
  12. 12.
    Wiltse LL, Jackson DW (1976) Treatment of spondylolisthesis and spondylolysis in children. Clin Orthop Relat Res 117:92–100Google Scholar
  13. 13.
    Lamberg T, Remes V, Helenius I, Schlenzka D, Seitsalo S, Poussa M (2007) Uninstrumented in situ fusion for high-grade childhood and adolescent isthmic spondylolisthesis: long-term outcome. J Bone Jt Surg Am 89:512–518. doi: 10.2106/JBJS.E.00545 Google Scholar
  14. 14.
    Dick WT, Schnebel B (1988) Severe spondylolisthesis. Reduction and internal fixation. Clin Orthop Relat Res 232:70–79Google Scholar
  15. 15.
    Matthiass HH, Heine J (1986) The surgical reduction of spondylolisthesis. Clin Orthop Relat Res 203:34–44Google Scholar
  16. 16.
    Molinari RW, Bridwell KH, Lenke LG, Ungacta FF, Riew KD (1999) Complications in the surgical treatment of pediatric high-grade, isthmic dysplastic spondylolisthesis. A comparison of three surgical approaches. Spine 24:1701–1711CrossRefPubMedGoogle Scholar
  17. 17.
    Muschik M, Zippel H, Perka C (1997) Surgical management of severe spondylolisthesis in children and adolescents. Anterior fusion in situ versus anterior spondylodesis with posterior transpedicular instrumentation and reduction. Spine 22:2036–2042 (discussion 2043) CrossRefPubMedGoogle Scholar
  18. 18.
    Ruf M, Koch H, Melcher RP, Harms J (2006) Anatomic reduction and monosegmental fusion in high-grade developmental spondylolisthesis. Spine 31:269–274. doi: 10.1097/01.brs.0000197204.91891.eb CrossRefPubMedGoogle Scholar
  19. 19.
    Sailhan F, Gollogly S, Roussouly P (2006) The radiographic results and neurologic complications of instrumented reduction and fusion of high-grade spondylolisthesis without decompression of the neural elements: a retrospective review of 44 patients. Spine 31:161–169 (discussion 170) CrossRefPubMedGoogle Scholar
  20. 20.
    Passias PG, Poorman CE, Yang S, Boniello AJ, Jalai CM, Worley N, Lafage V (2015) Surgical treatment strategies for high-grade spondylolisthesis: a systematic review. Int J Spine Surg 9:50. doi: 10.14444/2050 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheung EV, Herman MJ, Cavalier R, Pizzutillo PD (2006) Spondylolysis and spondylolisthesis in children and adolescents: II. Surgical management. J Am Acad Orthop Surg 14:488–498CrossRefPubMedGoogle Scholar
  22. 22.
    Bradford DS, Gotfried Y (1987) Staged salvage reconstruction of grade-IV and V spondylolisthesis. J Bone Jt Surg Am 69:191–202CrossRefGoogle Scholar
  23. 23.
    Ani N, Keppler L, Biscup RS, Steffee AD (1991) Reduction of high-grade slips (grades III–V) with VSP instrumentation. Report of a series of 41 cases. Spine 16:S302–S310CrossRefPubMedGoogle Scholar
  24. 24.
    Vialle R, Charosky S, Padovani JP, Rigault P, Glorion C (2006) Surgical treatment of high-grade lumbosacral spondylolisthesis in childhood, adolescent and young adult by the “double-plate” technique: a past experience. Eur Spine J 15:1210–1218. doi: 10.1007/s00586-005-0051-2 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kasliwal MK, Smith JS, Shaffrey CI, Saulle D, Lenke LG, Polly DW Jr, Ames CP, Perra JH (2012) Short-term complications associated with surgery for high-grade spondylolisthesis in adults and pediatric patients: a report from the scoliosis research society morbidity and mortality database. Neurosurgery 71:109–116. doi: 10.1227/NEU.0b013e3182535881 CrossRefPubMedGoogle Scholar
  26. 26.
    DeWald CJ, Vartabedian JE, Rodts MF, Hammerberg KW (2005) Evaluation and management of high-grade spondylolisthesis in adults. Spine 30:S49–S59CrossRefPubMedGoogle Scholar
  27. 27.
    Dvorak J, Sutter M, Eggspuehler A, Szpalski M, Aebi M (2007) Multimodal intraoperative monitoring: towards a routine use in surgical treatment of severe spinal disorders. Eur Spine J 16(Suppl 2):S113–S114. doi: 10.1007/s00586-007-0415-x CrossRefPubMedGoogle Scholar
  28. 28.
    Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Dvorak J (2007) Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J 16(Suppl 2):S188–S196. doi: 10.1007/s00586-007-0427-6 CrossRefPubMedGoogle Scholar
  29. 29.
    Sutter M, Deletis V, Dvorak J, Eggspuehler A, Grob D, Macdonald D, Mueller A, Sala F, Tamaki T (2007) Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J 16(Suppl 2):S232–S237. doi: 10.1007/s00586-007-0421-z CrossRefPubMedGoogle Scholar
  30. 30.
    Meyerding HW (1932) Spondylolisthesis. Surg Gynecol Obstet 54:371–377Google Scholar
  31. 31.
    Roder C, Chavanne A, Mannion AF, Grob D, Aebi M (2005) SSE Spine Tango—content, workflow, set-up. Tango. Eur Spine J 14:920–924. doi: 10.1007/s00586-005-1023-2
  32. 32.
    Mannion AF, Porchet F, Kleinstuck FS, Lattig F, Jeszenszky D, Bartanusz V, Dvorak J, Grob D (2009) The quality of spine surgery from the patient’s perspective. Part 1: the Core Outcome Measures Index in clinical practice. Eur Spine J 18(Suppl 3):367–373. doi: 10.1007/s00586-009-0942-8 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mannion AF, Elfering A, Staerkle R, Junge A, Grob D, Semmer NK, Jacobshagen N, Dvorak J, Boos N (2005) Outcome assessment in low back pain: how low can you go? Eur Spine J 14:1014–1026. doi: 10.1007/s00586-005-0911-9 CrossRefPubMedGoogle Scholar
  34. 34.
    Sutter M, Eggspuehler A, Muller A, Dvorak J (2007) Multimodal intraoperative monitoring: an overview and proposal of methodology based on 1,017 cases. Eur Spine J 16(Suppl 2):S153–S161. doi: 10.1007/s00586-007-0417-8 CrossRefPubMedGoogle Scholar
  35. 35.
    Harms J, Rolinger H (1982) A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion (author’s transl). Z Orthop Ihre Grenzgeb 120:343–347. doi: 10.1055/s-2008-1051624 CrossRefPubMedGoogle Scholar
  36. 36.
    Medical Research Council (1981) Aids to the examination of the Peripheral Nervous System. Her Majesty’s Stationery Office, London, EnglandGoogle Scholar
  37. 37.
    Longo UG, Loppini M, Romeo G, Maffulli N, Denaro V (2014) Evidence-based surgical management of spondylolisthesis: reduction or arthrodesis in situ. J Bone Jt Surg Am 96:53–58. doi: 10.2106/JBJS.L.01012 CrossRefGoogle Scholar
  38. 38.
    Seitsalo S (1990) Operative and conservative treatment of moderate spondylolisthesis in young patients. J Bone Jt Surg Br 72:908–913Google Scholar
  39. 39.
    Transfeldt EE, Dendrinos GK, Bradford DS (1989) Paresis of proximal lumbar roots after reduction of L5-S1 spondylolisthesis. Spine 14:884–887CrossRefPubMedGoogle Scholar
  40. 40.
    Petraco DM, Spivak JM, Cappadona JG, Kummer FJ, Neuwirth MG (1996) An anatomic evaluation of L5 nerve stretch in spondylolisthesis reduction. Spine 21:1133–1138 (discussion 1139) CrossRefPubMedGoogle Scholar
  41. 41.
    Hagenmaier HS, Delawi D, Verschoor N, Oner F, van Susante JL (2013) No correlation between slip reduction in low-grade spondylolisthesis or change in neuroforaminal morphology and clinical outcome. BMC Musculoskelet Disord 14:245. doi: 10.1186/1471-2474-14-245 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Burkus JK, Lonstein JE, Winter RB, Denis F (1992) Long-term evaluation of adolescents treated operatively for spondylolisthesis. A comparison of in situ arthrodesis only with in situ arthrodesis and reduction followed by immobilization in a cast. J Bone Jt Surg Am 74:693–704CrossRefGoogle Scholar
  43. 43.
    Yang EZ, Xu JG, Liu XK, Jin GY, Xiao W, Zeng BF, Lian XF (2016) An RCT study comparing the clinical and radiological outcomes with the use of PLIF or TLIF after instrumented reduction in adult isthmic spondylolisthesis. Eur Spine J 25:1587–1594. doi: 10.1007/s00586-015-4341-z CrossRefPubMedGoogle Scholar
  44. 44.
    Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:e1CrossRefPubMedGoogle Scholar
  45. 45.
    Nakamae T, Tanaka N, Nakanishi K, Kamei N, Hamasaki T, Izumi B, Fujioka Y, Ohta R, Ochi M (2013) Surgical treatment of high-grade dysplastic spondylolisthesis using intraoperative electrophysiological monitoring: report of two cases and review of the literature. Eur J Orthop Surg Traumatol 23(Suppl 1):S121–S127. doi: 10.1007/s00590-013-1199-9 CrossRefPubMedGoogle Scholar
  46. 46.
    Langeloo DD, Lelivelt A, Louis Journee H, Slappendel R, de Kleuver M (2003) Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients. Spine 28:1043–1050. doi: 10.1097/01.BRS.0000061995.75709.78 PubMedGoogle Scholar
  47. 47.
    Park P, Wang AC, Sangala JR, Kim SM, Hervey-Jumper S, Than KD, Farokhrani A, Lamarca F (2011) Impact of multimodal intraoperative monitoring during correction of symptomatic cervical or cervicothoracic kyphosis. J Neurosurg Spine 14:99–105. doi: 10.3171/2010.9.SPINE1085 CrossRefPubMedGoogle Scholar
  48. 48.
    Kobayashi S, Matsuyama Y, Shinomiya K, Kawabata S, Ando M, Kanchiku T, Saito T, Takahashi M, Ito Z, Muramoto A, Fujiwara Y, Kida K, Yamada K, Wada K, Yamamoto N, Satomi K, Tani T (2014) A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: a prospective multicenter study from the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery and Related Research. J Neurosurg Spine 20:102–107. doi: 10.3171/2013.10.SPINE12944 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ralph T. Schär
    • 1
    • 4
  • Martin Sutter
    • 2
  • Anne F. Mannion
    • 3
  • Andreas Eggspühler
    • 3
  • Dezsö Jeszenszky
    • 1
  • Tamas F. Fekete
    • 1
  • Frank Kleinstück
    • 1
  • Daniel Haschtmann
    • 1
  1. 1.Spine CenterSchulthess KlinikZurichSwitzerland
  2. 2.Department of NeurologySchulthess KlinikZurichSwitzerland
  3. 3.Department of Teaching, Research and DevelopmentSchulthess KlinikZurichSwitzerland
  4. 4.Department of NeurosurgeryInselspital, Bern University Hospital, University of BernBernSwitzerland

Personalised recommendations