Stokes IA, Aronsson DD, Dimock AN et al (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24:1327–1334
Article
PubMed
PubMed Central
Google Scholar
Parent S, Labelle H, Skalli W, de Guise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine (Phila Pa 1976) 29:E455–E462
Article
Google Scholar
Betz RR, Ranade A, Samdani AF et al (2010) Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976) 35:169–176
Article
Google Scholar
Samdani AF, Ames RJ, Kimball JS et al (2014) Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976) 39:1688–1693. doi:10.1097/BRS.0000000000000472
Article
Google Scholar
Busscher I, Ploegmakers JJW, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19:1104–1114
Article
PubMed
PubMed Central
Google Scholar
Roth AK, Bogie R, Jacobs E et al (2013) Large animal models in fusionless scoliosis correction research: a literature review. Spine J 13:675–688
Article
PubMed
Google Scholar
Driscoll M, Aubin CE, Moreau A et al (2012) Spinal growth modulation using a novel intravertebral epiphyseal device in an immature porcine model. Eur Spine J 21:138–144
Article
PubMed
Google Scholar
Moal B, Schwab F, Demakakos J et al (2013) The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 22:1800–1809. doi:10.1007/s00586-013-2743-3
Article
Google Scholar
Dimeglio A (2001) Growth in pediatric orthopaedics. J Pediatr Orthop 21:549–555
CAS
PubMed
Google Scholar
Huynh A-M, Aubin C-E, Rajwani T et al (2006) Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J 16:523–529
Article
PubMed
PubMed Central
Google Scholar
Driscoll M, Aubin CE, Moreau A et al (2009) The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J 18:180–187
Article
PubMed
PubMed Central
Google Scholar
Shi L, Wang D, Driscoll M et al (2011) Biomechanical analysis and modeling of different vertebral growth patterns in adolescent idiopathic scoliosis and healthy subjects. Scoliosis 6:11
Article
PubMed
PubMed Central
Google Scholar
Clin J, Aubin CE, Parent S (2015) Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device. Spine (Phila Pa 1976) 40:369–376. doi:10.1097/BRS.0000000000000777
Article
Google Scholar
Lafortune P, Aubin CE, Boulanger H et al (2007) Biomechanical simulations of the scoliotic deformation process in the pinealectomized chicken: a preliminary study. Scoliosis 2:16
Article
PubMed
PubMed Central
Google Scholar
Kumar B, Bylski-Austrow DI, Liu Y (2012) Finite element model of spinal hemiepiphysiodesis: effect of contact conditions, initial conditions, and growth. Stud Heal Technol Inf 176:99–103
CAS
Google Scholar
Akahoshi S, Sakai A, Arita S et al (2005) Modulation of bone turnover by alfacalcidol and/or alendronate does not prevent glucocorticoid-induced osteoporosis in growing minipig. J Bone Miner Metab 23:341–350
CAS
Article
PubMed
Google Scholar
Bozkus H, Crawford NR, Chamberlain RH et al (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19:1652–1665
CAS
Article
PubMed
Google Scholar
Ryan G, Pandit A, Apatsidis D (2008) Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine. Clin Biomech 23:859–869
Article
Google Scholar
Sergerie K, Lacoursière MO, Lévesque M, Villemure I (2009) Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. J Biomech 42:510–516
Article
PubMed
Google Scholar
Kato N, Koshino T, Saito T, Takeuchi R (1998) Estimation of Young’s modulus in swine cortical bone using quantitative computed tomography. Bull Hosp Jt Dis 57:183–186
CAS
PubMed
Google Scholar
Gillespie KA, Dickey JP (2004) Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine (Phila Pa 1976) 29:1208–1216
Article
Google Scholar
Patwardhan AG, Meade KP, Lee B (2001) A frontal plane model of the lumbar spine subjected to a follower load: implications for the role of muscles. J Biomech Eng 123:212–217. doi:10.1115/1.1372699
CAS
Article
PubMed
Google Scholar
Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11:137–144
Article
PubMed
PubMed Central
Google Scholar
Schwab F, Patel A, Lafage V, Farcy JP (2009) A porcine model for progressive thoracic scoliosis. Spine (Phila Pa 1976) 34:E397–E404
Article
Google Scholar
Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine (Phila Pa 1976) 30:1148–1153
Article
Google Scholar
Glos DL, Boehm LA, Jain VV et al (2011) Coronal plane displacement gradient precedes vertebral growth modification using titanium spinal hemiepiphyseal implant. Orthop Res Soc Annu, Meet
Google Scholar
Newton PO, Upasani VV, Farnsworth CL et al (2008) Spinal growth modulation with use of a tether in an immature porcine model. J Bone Jt Surg 90:2695–2706
Article
Google Scholar
Pruijs JEH, Hageman MAPE, Keessen W et al (1994) Variation in Cobb angle measurements in scoliosis. Skelet Radiol 23:517–520. doi:10.1007/BF00223081
CAS
Article
Google Scholar
Cobetto N, Aubin CE, Parent S et al (2016) Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J 25:3056–3064. doi:10.1007/s00586-016-4434-3
CAS
Article
PubMed
Google Scholar
Vergari C, Courtois I, Ebermeyer E et al (2016) Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur Spine J 25:3049–3055. doi:10.1007/s00586-016-4511-7
Article
PubMed
Google Scholar
Beguiristain JL, De Salis J, Oriaifo A, Canadell J (1980) Experimental scoliosis by epiphysiodesis in pigs. Int Orthop 3:317–321
CAS
Article
PubMed
Google Scholar
Agarwal A, Agarwal AK, Jayaswal A, Goel VK (2016) Effect of distraction force on growth and biomechanics of the spine: a finite element study on normal juvenile spine with dual growth rod instrumentation. Spine Deform 2:260–269. doi:10.1016/j.jspd.2014.03.007
Article
Google Scholar
Agarwal A, Zakeri A, Agarwal AK et al (2015) Distraction magnitude and frequency affects the outcome in juvenile idiopathic patients with growth rods: finite element study using a representative scoliotic spine model. Spine J. doi:10.1016/j.spinee.2015.04.003
PubMed
Google Scholar
Agarwal A, Agarwal AK, Jayaswal A, Goel V (2016) Smaller interval distractions may reduce chances of growth rod breakage without impeding desired spinal growth: a finite element study. Spine Deform 2:430–436. doi:10.1016/j.jspd.2014.08.004
Article
Google Scholar