Skip to main content
Log in

First clinical results of minimally invasive vector lumbar interbody fusion (MIS-VLIF) in spondylodiscitis and concomitant osteoporosis: a technical note

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2017

This article has been updated

Abstract

Purpose

First description of MIS-VLIF, a minimally invasive lumbar stabilization, to evaluate its safety and feasibility in patients suffering from weak bony conditions (lumbar spondylodiscitis and/or osteoporosis).

Methods

After informed consent, 12 patients suffering from lumbar spondylodiscitis underwent single level MIS-VLIF. Eight of them had a manifest osteoporosis, either. Pre- and postoperative clinical status was documented using numeric rating scale (NRS) for leg and back pain. In all cases, the optimal height for the cage was preoperatively determined using software-based range of motion and sagittal balance analysis. CT scans were obtained to evaluate correct placement of the construct and to verify fusion after 6 months.

Results

Since 2013, 12 patients with lumbar pyogenic spondylodiscitis underwent MIS-VLIF. Mean surgery time was 169 ± 28 min and average blood loss was less than 400 ml. Postoperative CT scans showed correct placement of the implants. Eleven patients showed considerable postoperative improvement in clinical scores. In one patient, we observed screw loosening. After documented bony fusion in the CT scan, the fixation system was removed in two cases to achieve lower material load.

Conclusions

The load-bearing trajectories (vectors) of MIS-VLIF are different from those of conventional coaxial pedicle screw implantation. The dorsally converging construct combines the heads of the dorsoventral pedicle screws with laminar pedicle screws following cortical bone structures within a small approach. In case of lumbar spondylodiscitis and/or osteoporosis, MIS-VLIF relies on cortical bony structures for all screw vectors and the construct does not depend on conventional coaxial pedicle screws in the presence of inflamed, weak, cancellous or osteoporotic bone. MIS-VLIF allows full 360° lumbar fusion including cage implantation via a small, unilateral dorsal midline approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 17 February 2017

    An erratum to this article has been published.

References

  1. Klöckner C, Wiedenhöfer B (2012) Therapie der unspezifischen destruierenden Spndylodiszitis unter besonderer Berücksichtigung des sagittalen Profils. Orthopäde 41:736–741

    Article  PubMed  Google Scholar 

  2. Rutges JPHJ, Kempen DH, Dijk MV et al (2015) Outcome of conservative and surgical treatment of pyogenic spondylodiscitis: a systematic literature review. Eur Spine J. doi:10.1007/s00586-015-4318-y

    PubMed  Google Scholar 

  3. Nasto LA, Colangelo D, Mazzotta V et al (2014) Is posterior percutaneous screw-rod instrumentation a safe and effective alternative approach to TLSO rigid bracing for single-level pyogenic spondylodiscitis? Results of a retrospective cohort analysis. Spine J 14:1139–1146

    Article  PubMed  Google Scholar 

  4. Shetty AP, Aiyer SN, Kanna RM et al (2015) Pyogenic lumbar spondylodiscitis treated with transforaminal lumbar interbody fusion: safety and outcomes. Int Orthop. doi:10.1007/s00264-015-3063-5

    PubMed  Google Scholar 

  5. Shiban E, Janssen I, Wostrack M et al (2014) A retrospective study of 113 consecutive cases of surgically treated spondylodiscitis patients. A single-center experience. Acta Neurochir 156:1189–1196

    Article  PubMed  Google Scholar 

  6. Patel NB, Dodd ZH, Voorhies J, Horn EM (2015) Minimally invasive lateral transpsoas approach for spinal discitis and osteomyelitis. J Clin Neurosci 22:1753–1757

    Article  PubMed  Google Scholar 

  7. Harms JG (1998) Jeszenszky D [In Process Citation]. Operative Orthopädie und Traumatologie 10:90–102

    Article  CAS  PubMed  Google Scholar 

  8. Holly LT, Schwender JD, Rouben DP, Foley KT (2006) Minimally invasive transforaminal lumbar interbody fusion: indications, technique, and complications. Neurosurg Focus 20:E6

    Article  PubMed  Google Scholar 

  9. Scheufler KM, Dohmen H, Vougioukas VI (2007) Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 60:203–212 (discussion 212–3)

    Article  PubMed  Google Scholar 

  10. Lin Y, Chen W, Chen A, Li F (2016) Comparison between minimally invasive and open transforaminal lumbar interbody fusion: a metaanalysis of clinical results and safety outcomes. J Neurol Surgery 77:2–10

    Article  Google Scholar 

  11. Reinshagen C, Ruess D, Walcott BP et al (2015) A novel minimally invasive technique for lumbar decompression, realignment, and navigated interbody fusion. J Clin Neurosci 22:1484–1490

    Article  PubMed  Google Scholar 

  12. Inceoğlu S, Montgomery WH Jr, St Clair S, McLain RF (2011) Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies. J Neurosurg Spine 14:670–676

    Article  PubMed  Google Scholar 

  13. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373

    Article  CAS  PubMed  Google Scholar 

  14. Vaidya R, Novel V (2010) Construct and method of spinal stabilization after transforaminal lumbar interbody fusion using the construct. United States Patent Application Publication. US Patent US20100280554 A1‚ 4 nov 2010

  15. Sethi A, Muzumdar AM, Ingalhalikar A, Vaidya R (2011) Biomechanical analysis of a novel posterior construct in a transforaminal lumbar interbody fusion model an in vitro study. Spine J 11(9):863–869. doi:10.1016/j.spinee.2011.06.015

    Article  PubMed  Google Scholar 

  16. Sethi A, Lee S, Vaidya R (2009) Transforaminal lumbar interbody fusion using unilateral pedicle screws and a translaminar screw. Eur Spine J 18:430–434

    Article  PubMed  Google Scholar 

  17. Knox JB, Dai JM, Orchowski JR (2011) Superior segment facet joint violation and cortical violation after minimally invasive pedicle screw placement. Spine J 11:213–217

    Article  PubMed  Google Scholar 

  18. Dettmar-Rieger J(2013) Vektor-Lumbale interkorporelle fusion. DMPA. DE Patent DE 102011119646 A1‚ 27 June 2013

  19. Jeanneret B, Kleinstück F, Magerl F (1995) Die translaminäre Verschraubung der lumbalen Wirbelgelenke. Operative Orthopädie und Traumatologie 7:37–53

    Article  Google Scholar 

  20. Cho W, Cho SK, Wu C (2010) The biomechanics of pedicle screw-based instrumentation. J Bone Joint Surg 92:1061–1065

    Article  CAS  Google Scholar 

  21. Matsukawa K, Yato Y, Imabayashi H et al (2016) Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg: Spine. doi:10.3171/2015.11.SPINE15926

    Google Scholar 

  22. Wang Z, Sakakibara T, Yoshikawa T et al (2013) Do the position and orientation of the crosslink influence the stiffness of spinal instrumentation? J Spinal Disord Tech. doi:10.1097/BSD.0000000000000046

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Rieger.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Additional information

B. Rieger and H. Jiang contributed equally.

An erratum to this article is available at https://doi.org/10.1007/s00586-017-4992-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieger, B., Jiang, H., Ruess, D. et al. First clinical results of minimally invasive vector lumbar interbody fusion (MIS-VLIF) in spondylodiscitis and concomitant osteoporosis: a technical note. Eur Spine J 26, 3147–3155 (2017). https://doi.org/10.1007/s00586-016-4928-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4928-z

Keywords

Navigation