Growth modulation and remodeling by means of posterior tethering technique for correction of early-onset scoliosis with thoracolumbar kyphosis

Abstract

Purpose

The aim of this study is to evaluate the role of the non-fusion instrumented procedure with compression adjunct to lengthening by distraction in facilitating spinal modulation of the wedged peak vertebra, in patients with congenital thoracolumbar kyphosis/kyphoscoliosis according to the Hueter–Volkmann law. The authors seek to address the progressive modulation of the most wedged vertebra by analyzing the subjects’ pre-operative and latest follow-up sagittal radiograph.

Methods

Ongoing data collection of 14 peak wedged vertebra modulation during surgical management of 13 patients with Type I congenital thoracolumbar kyphosis (5 patients) or kyphoscoliosis (8 patients). Age at initial surgery averaged 58.6 months, with mean follow-up of 55.6 months (24–78). All were done with hybrid rib construct with clawing fashion through a single posterior approach with at least 4 lengthenings.

Results

Two vertebral bodies were selected, the peaked deformed vertebrae within the instrumentation compression level (WICL) and the vertebrae nearest but outside the instrumentation compression process (OICL). Anterior vertebral body height (AVBH) and posterior vertebral body height (PVBH) were measured in both vertebral bodies. Regarding measured vertebrae (WICL), average preoperative AVBH/PVBH ratio significantly increased from 0.54 to 0.77 in the final follow-up. Regarding measured vertebrae (OICL), the average preoperative AVBH/PVBH ratio increased from 0.76 to 0.79 in the final follow-up. Modulation can be confirmed in the most deformed vertebrae (WICL) as the difference between the change in AVBH/PVBH ratio between vertebrae (OICL) and (WICL) was statistically significant (P < 0.001).

Conclusions

Through the compression model adjunct to lengthening through distraction implemented in the surgical management of early-onset scoliosis, wedging improves through vertebral modulation (WICL) in comparison with the (OICL). This calls for further studies on the impact of surgical correction of EOS on modulation of the vertebrae.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Winter RB, Moe JH, Wang JF (1973) Congenital kyphosis. Its natural history and treatment as observed in a study of one hundred and thirty patients. J Bone Joint Surg Am 55(2):223–256

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Smith JT, Gollogly S, Dunn HK (2005) Simultaneous anterior-posterior approach through a costotransversectomy for the treatment of congenital kyphosis and acquired kyphoscoliotic deformities. J Bone Joint Surg Am 87(10):2281–2289. doi:10.2106/jbjs.d.01795

    PubMed  Google Scholar 

  3. 3.

    Basu PS, Elsebaie H, Noordeen MH (2002) Congenital spinal deformity: a comprehensive assessment at presentation. Spine 27(20):2255–2259. doi:10.1097/01.brs.0000029425.58936.ba

    Article  PubMed  Google Scholar 

  4. 4.

    Winter RB (1973) Congenital spine deformity. Natural history and treatment. Isr J Med Sci 9(6):719–727

    CAS  PubMed  Google Scholar 

  5. 5.

    Mayfield JK, Winter RB, Bradford DS, Moe JH (1980) Congenital kyphosis due to defects of anterior segmentation. J Bone Joint Surg Am 62(8):1291–1301

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Atici Y, Sokucu S, Uzumcugil O, Albayrak A, Erdogan S, Kaygusuz MA (2013) The results of closing wedge osteotomy with posterior instrumented fusion for the surgical treatment of congenital kyphosis. Eur Spine J 22(6):1368–1374. doi:10.1007/s00586-013-2755-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    McMaster MJ, Singh H (1999) Natural history of congenital kyphosis and kyphoscoliosis. A study of one hundred and twelve patients. J Bone Joint Surg Am 81(10):1367–1383

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Akyuz E, Braun JT, Brown NA, Bachus KN (2006) Static versus dynamic loading in the mechanical modulation of vertebral growth. Spine 31(25):E952–E958. doi:10.1097/01.brs.0000248810.77151.22

    Article  PubMed  Google Scholar 

  9. 9.

    Betz RR, D’Andrea LP, Mulcahey MJ, Chafetz RS (2005) Vertebral body stapling procedure for the treatment of scoliosis in the growing child. Clin Orthop Relat Res 434:55–60

    Article  Google Scholar 

  10. 10.

    Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN (2006) Three-dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine 31(3):262–268. doi:10.1097/01.brs.0000197569.13266.fe

    Article  PubMed  Google Scholar 

  11. 11.

    Wall EJ, Bylski-Austrow DI, Kolata RJ, Crawford AH (2005) Endoscopic mechanical spinal hemiepiphysiodesis modifies spine growth. Spine 30(10):1148–1153

    Article  PubMed  Google Scholar 

  12. 12.

    Goh S, Price RI, Leedman PJ, Singer KP (2000) A comparison of three methods for measuring thoracic kyphosis: implications for clinical studies. Rheumatology (Oxford, England) 39(3):310–315

    CAS  Article  Google Scholar 

  13. 13.

    Manns RA, Haddaway MJ, McCall IW, Cassar Pullicino V, Davie MWJ (1996) The relative contribution of disc and vertebral morphometry to the angle of kyphosis in asymptomatic subjects. Clin Radiol 51(4):258–262. doi:10.1016/S0009-9260(96)80342-4

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Goh S, Price RI, Leedman PJ, Singer KP (1999) The relative influence of vertebral body and intervertebral disc shape on thoracic kyphosis. Clin Biomech (Bristol, Avon) 14(7):439–448

    CAS  Article  Google Scholar 

  15. 15.

    Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-A:591–610

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Moe JH (1980) Modern concepts of treatment of spinal deformities in children and adults. Clin Orthop Relat Res 150:137–153

    Google Scholar 

  17. 17.

    Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine 31(12):1314–1320. doi:10.1097/01.brs.0000218662.78165.b1

    Article  PubMed  Google Scholar 

  18. 18.

    Braun JT, Hines JL, Akyuz E, Vallera C, Ogilvie JW (2006) Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis. Spine 31(16):1776–1782. doi:10.1097/01.brs.0000227263.43060.50

    Article  PubMed  Google Scholar 

  19. 19.

    Braun JT, Akyuz E, Ogilvie JW (2005) The use of animal models in fusionless scoliosis investigations. Spine 30(17 Suppl):S35–S45

    Article  PubMed  Google Scholar 

  20. 20.

    Stokes IA, Spence H, Aronsson DD, Kilmer N (1996) Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Spine 21(10):1162–1167

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Mente PL, Stokes IA, Spence H, Aronsson DD (1997) Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine 22(12):1292–1296

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Wessels M, Hekman EE, Kruyt MC, Castelein RM, Homminga JJ, Verkerke GJ (2016) Spinal shape modulation in a porcine model by a highly flexible and extendable non-fusion implant system. Eur Spine J 25(9):2975–2983. doi:10.1007/s00586-016-4570-9

    Article  PubMed  Google Scholar 

  23. 23.

    Wessell NM, Martus JE, Halanski MA, Snyder B, Truong W (2016) What’s new in pediatric spine growth modulation and implant technology for early-onset scoliosis? J Pediatr Orthop. doi:10.1097/bpo.0000000000000830

    PubMed  Google Scholar 

  24. 24.

    Olgun ZD, Ahmadiadli H, Alanay A, Yazici M (2012) Vertebral body growth during growing rod instrumentation: growth preservation or stimulation? J Pediatr Orthop 32(2):184–189. doi:10.1097/BPO.0b013e3182471915

    Article  PubMed  Google Scholar 

  25. 25.

    Sarwark J, Aubin CE (2007) Growth considerations of the immature spine. J Bone Joint Surg Am 89(Suppl 1):8–13. doi:10.2106/jbjs.f.00314

    PubMed  Google Scholar 

  26. 26.

    El-Hawary R, Samdani A, Wade J, Smith M, Heflin JA, Klatt JW, Vitale MG, Smith JT (2015) Rib-based distraction surgery maintains total spine growth. J Pediatr Orthop. doi:10.1097/bpo.0000000000000567

    Google Scholar 

  27. 27.

    Enercan M, Kahraman S, Erturer E, Ozturk C, Hamzaoglu A (2014) Apical and intermediate anchors without fusion improve Cobb angle and thoracic kyphosis in early-onset scoliosis. Clin Orthop Relat Res 472(12):3902–3908. doi:10.1007/s11999-014-3815-3

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Jain V, Lykissas M, Trobisch P, Wall EJ, Newton PO, Sturm PF, Cahill PJ, Bylski-Austrow DI (2014) Surgical aspects of spinal growth modulation in scoliosis correction. Instr Course Lect 63:335–344

    PubMed  Google Scholar 

  29. 29.

    Xue X, Shen J, Zhang J, Li S, Wang Y, Qiu G (2014) X-ray assessment of the effect of pedicle screw on vertebra and spinal canal growth in children before the age of 7 years. Eur Spine J 23(3):520–529. doi:10.1007/s00586-013-3035-7

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alaaeldin A. Ahmad.

Ethics declarations

All procedures done in this study were within approved ethical standards.

Informed consent was obtained from all participants involved in this study.

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A.A., Aker, L., Hanbali, Y. et al. Growth modulation and remodeling by means of posterior tethering technique for correction of early-onset scoliosis with thoracolumbar kyphosis. Eur Spine J 26, 1748–1755 (2017). https://doi.org/10.1007/s00586-016-4910-9

Download citation

Keywords

  • Posterior tethering technique
  • Non-fusion technique
  • Early-onset scoliosis
  • Thoracolumbar kyphosis
  • Vertebral modulation