European Spine Journal

, Volume 26, Issue 5, pp 1515–1524 | Cite as

How safe is minimally invasive pedicle screw placement for treatment of thoracolumbar spine fractures?

  • Timo Michael Heintel
  • Stefan Dannigkeit
  • Annabel Fenwick
  • Martin Cornelius Jordan
  • Hendrik Jansen
  • Fabian Gilbert
  • Rainer Meffert
Original Article


Study design

Prospective analysis of patients who underwent minimally invasive posterior instrumentation.


The purpose of this study was to evaluate the safety of minimally invasive pedicle screw placement in patients with unstable thoracic and lumbar spine fractures using the conventional fluoroscopy technique.

Summary of background data

Although wound infection, haematoma, and new neurological deficit due to screw malplacement remain a common source of morbidity, estimates of their rates of occurrence remain relatively limited.


2052 percutaneous pedicle screws in 433 consecutive patients were evaluated. The accuracy of pedicle screw placement was based on evaluation of axial 3-mm slice computed tomography scans. Morbidity and mortality data were collected prospectively.


A total of 2029 of 2052 screws (99%) had a good or excellent position. 5 screws (0.2%) showed a higher grade violation of the medial pedicle wall. Seven patients (1.8%) needed revision due to screw malposition (3 pat.), surgical site infection, postoperative haematoma, implant failure (2 pat.), and technical difficulties.


Minimally invasive transpedicular instrumentation is an accurate, reliable, and safe procedure to treat thoracic and lumbar spine fractures.


Thoracolumbar spine fractures Complications Infection Instrumentation Minimally invasive 


Compliance with ethical standards

The study was approved by the institutional review board in accordance with the ethical principles originating from the Declaration of Helsinki and in compliance with Good Clinical Practice.

Conflict of interest

None of the authors has any potential conflict of interest.

Informed consent

All patients gave their informed consent.


  1. 1.
    Alpantaki K, Bano A, Pasku D, Mavrogenis AF, Papagelopoulos PJ, Sapkas GS, Korres DS, Katonis P (2010) Thoracolumbar burst fractures: a systematic review of management. Orthopedics 33(6):422–429CrossRefPubMedGoogle Scholar
  2. 2.
    Oner FC, Wood KB, Smith JS, Shaffrey CI (2010) Therapeutic decision making in thoracolumbar spine trauma. Spine 35:S235–S244CrossRefPubMedGoogle Scholar
  3. 3.
    Foley KT, Gupta SK, Justis JR, Sherman MC (2001) Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus 10:E10CrossRefPubMedGoogle Scholar
  4. 4.
    Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, Bühren V, Blauth M (2010) Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, internet-based multicenter study of the Spine Study Group of the German Association of Trauma Surgery. Eur Spine J 19:1657–1676CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khare S, Sharma V (2013) Surgical outcome of posterior short segment trans-pedicle screw fixation for thoracolumbar fractures. J Orthop 10(4):162–167CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mobbs RJ, Sivabalan P, Li J (2011) Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741–749CrossRefPubMedGoogle Scholar
  7. 7.
    Lee SH, Choi WG, Lim SR, Kang HY, Shin SW (2004) Minimally invasive anterior lumbar interbody fusion followed by percutaneous pedicle screw fixation for isthmic spondylolisthesis. Spine J 4:644–649CrossRefPubMedGoogle Scholar
  8. 8.
    Rahman M, Summers LE, Richter B, Mimran RI, Jacob RP (2008) Comparison of techniques for decompressive lumbar laminectomy: the minimally invasive versus the “classic” open approach. Minim Invasive Neurosurg 51:100–105CrossRefPubMedGoogle Scholar
  9. 9.
    Powers CJ, Isaacs RE (2006) Minimally invasive fusion and fixation techniques. Neurosurg Clin N Am 17:477–489CrossRefPubMedGoogle Scholar
  10. 10.
    Dickerman RD, Reynolds AS, Tackett J, Winters K, Alvarado C (2008) Percutaneous pedicle screws significantly decrease muscle damage and operative time: surgical technique makes a difference. Eur Spine J 17:1398CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wild MH, Glees M, Plieschnegger C, Wenda K (2007) Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg 127(5):335–343CrossRefPubMedGoogle Scholar
  12. 12.
    Merom L, Raz N, Hamud C, Weisz I, Hanani A (2009) Minimally invasive burst fracture fixation in the thoracolumbar region. Orthopedics 32(4):273–275CrossRefGoogle Scholar
  13. 13.
    Heintel TM, Berglehner A, Meffert R (2013) Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures: a prospective trial. Eur Spine J 22(3):495–502CrossRefPubMedGoogle Scholar
  14. 14.
    Zdichavsky M, Blauth M, Knop C, Graessner M, Herrmann H, Krettek C, Bastian L (2004) Accuracy of pedicle screw placement in thoracic spine fractures. Part I: inter- and intra-observer reliability of the scoring system. Eur J Trauma 30:234–240CrossRefGoogle Scholar
  15. 15.
    Vaccaro AR, Schroeder GD, Kepler CK, Cumhur Oner F, Vialle LR, Kandziora F, Koerner JD, Kurd MF, Reinhold M, Schnake KJ, Chapman J, Aarabi B, Fehlings MG, Dvorak MF (2016) The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur Spine J 25(4):1087–1094CrossRefPubMedGoogle Scholar
  16. 16.
    Lund T, Laine T, Österman H, Yrjönen T, Schlenzka D (2012) Accuracy of computer assisted screw insertion. The evidence. J Bone Joint Surg Br 94-B(SUPP XXXI):32Google Scholar
  17. 17.
    Austin MS, Vaccaro AR, Brislin B, Nachwalter R, Hilibrand AS, Albert TJ (2002) Image-guided spine surgery; a cadaver study comparing conventional open laminoforaminotomy and two image-guided techniques for pedicle screw placement in posterolateral fusion and nonfusion models. Spine 27:2503–2508CrossRefPubMedGoogle Scholar
  18. 18.
    Özkan N, Sandalcioglu IE, Petr O, Kurniawan A, Dammann P, Schlamann M, Sure U, Asgari S (2012) Minimally invasive transpedicular dorsal stabilization of the thoracolumbar and lumbar spine using the minimal access non-traumatic insertion system (MANTIS): preliminary clinical results in 52 patients. J Neurol Surg A Cent Eur Neurosurg 73(6):369–376CrossRefPubMedGoogle Scholar
  19. 19.
    Hicks JM, Singla A, Shen FH, Arlet V (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine 35(11):E465–E470CrossRefPubMedGoogle Scholar
  20. 20.
    Fehlings MG, Brodke DS, Norvell DC, Dettori JR (2010) The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine 35(9 Suppl):S37–S46PubMedGoogle Scholar
  21. 21.
    Lall RR, Lall RR, Hauptman JS, Munoz C, Cybulski GR, Koski T, Ganju A, Fessler RG, Smith ZA (2012) Intraoperative neurophysiological monitoring in spine surgery: indications, efficacy, and role of the preoperative checklist. Neurosurg Focus 33(5):E10CrossRefPubMedGoogle Scholar
  22. 22.
    Gavaret M, Jouve JL, Péréon Y, Accadbled F, André-Obadia N, Azabou E, Blondel B, Bollini G, Delécrin J, Farcy JP, Fournet-Fayard J, Garin C, Henry P, Manel V, Mutschler V, Perrin G, Sales de Gauzy J, French Society of Spine Surgery SFCR (2013) Intraoperative neurophysiologic monitoring in spine surgery. Developments and state of the art in France in 2011. Orthop Traumatol Surg Res 99(6 Suppl):S319–S327CrossRefPubMedGoogle Scholar
  23. 23.
    Hamilton DK, Smith JS, Sansur CA, Glassman SD, Ames CP, Berven SH, Polly DW Jr, Perra JH, Knapp DR, Boachie-Adjei O, McCarthy RE, Shaffrey CI, Scoliosis Research Society Morbidity and Mortality Committee (2011) Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: a report of the scoliosis research society morbidity and mortality committee. Spine 36(15):1218–1228CrossRefPubMedGoogle Scholar
  24. 24.
    Abbey DM, Turner DM, Warson JS, Wirt TC, Scalley RD (1995) Treatment of postoperative wound infections following spinal fusion with instrumentation. J Spinal Disord 8:278–283CrossRefPubMedGoogle Scholar
  25. 25.
    Hodges SD, Humphreys SC, Eck JC, Covington LA, Kurzynske NG (1998) Low postoperative infection rates with instrumented lumbar fusion. South Med J 91:1132–1136CrossRefPubMedGoogle Scholar
  26. 26.
    Picada R, Winter RB, Lonstein JE, Denis F, Pinto MR, Smith MD, Perra JH (2000) Postoperative deep wound infection in adults after posterior lumbosacral spine fusion with instrumentation: incidence and management. J Spinal Disord 13:42–45CrossRefPubMedGoogle Scholar
  27. 27.
    Tenney JH, Vlahov D, Salcman M, Ducker TB (1985) Wide variation in risk of wound infection following clean neurosurgery. Implications for perioperative antibiotic prophylaxis. J Neurosurg 62:243–247CrossRefPubMedGoogle Scholar
  28. 28.
    Weinstein MA, McCabe JP, Cammisa FP Jr (2000) Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. J Spinal Disord 13:422–426CrossRefPubMedGoogle Scholar
  29. 29.
    Wimmer C, Gluch H, Franzreb M, Ogon M (1998) Predisposing factors for infection in spine surgery: a survey of 850 spinal procedures. J Spinal Disord 11:124–128PubMedGoogle Scholar
  30. 30.
    O’Toole JE, Eichholz KM, Fessler RG (2009) Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11(4):471–476CrossRefPubMedGoogle Scholar
  31. 31.
    Ni WF, Huang YX, Chi YL, Xu HZ, Lin Y, Wang XY, Huang QS, Mao FM (2010) Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures. J Spinal Disord Tech 23(8):530–537CrossRefPubMedGoogle Scholar
  32. 32.
    Blondel B, Fuentes S, Pech-Gourg G, Adetchessi T, Tropiano P, Dufour H (2011) Percutaneous management of thoracolumbar burst fractures: evolution of techniques and strategy. Orthop Traumatol Surg Res 97(5):527–532CrossRefPubMedGoogle Scholar
  33. 33.
    Bironneau A, Bouquet C, Millet-Barbe B, Leclercq N, Pries P, Gayet LE (2011) Percutaneous internal fixation combined with kyphoplasty for neurologically intact thoracolumbar fractures: a prospective cohort study of 24 patients with one year of follow-up. Orthop Traumatol Surg Res 97(4):389–395CrossRefPubMedGoogle Scholar
  34. 34.
    Smith JS, Shaffrey CI, Sansur CA, Berven SH, Fu KM, Broadstone PA, Choma TJ, Goytan MJ, Noordeen HH, Knapp DR Jr, Hart RA, Donaldson WF 3rd, Polly DW Jr, Perra JH, Boachie-Adjei O, Scoliosis Research Society Morbidity and Mortality Committee (2011) Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine 36(7):556–563CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Timo Michael Heintel
    • 1
  • Stefan Dannigkeit
    • 1
  • Annabel Fenwick
    • 1
  • Martin Cornelius Jordan
    • 1
  • Hendrik Jansen
    • 1
  • Fabian Gilbert
    • 1
  • Rainer Meffert
    • 1
  1. 1.Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity Hospital WuerzburgWürzburgGermany

Personalised recommendations