Skip to main content

Advertisement

Log in

Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Objectives

To explore the effect of citric acid (CA)-1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) collagen gel on repairing annular defects.

Methods

Type I collagen was extracted from the rat-tail tendon and crosslinked with CA at different mass ratio using EDC and NHS as crosslinking reagents to prepare four kinds of collagen gels. Forty-eight adult SD rats were divided into first sham group (n = 8), second group (n = 10) which was punctured and injected with CA-EDC/NHS collagen gel, third group (n = 10) which was punctured and injected with CA-EDC/NHS collagen gel, fourth group (n = 10) which was punctured and injected with EDC/NHS collagen gel, and fifth group (n = 10) which was punctured and untreated. X-ray images and magnetic resonance imaging images were obtained before puncture and at the 1st, 2nd, and 4th week after puncture. At each time point, disc height index (%DHI), voxel count and modified MRI Pfirrmann grading were collected and analyzed. All animals were killed at the 4th week to study the morphology.

Results

The discs in the second group showed only slight degeneration compared with the healthy discs, and the results of %DHI (average 79%), voxel count (average 126.9), Pfirrmann grading (average grade 1.3) and morphology in the second group indicated less degeneration tendency compared with the other three puncture groups at the 4th week (P < 0.05). The annular fibrosus was partially repaired by the collagen gels that bridged the defects.

Conclusions

CA-EDC/NHS collagen gel is capable of repairing annular defects induced by needle puncture, which may be closely related to the dose of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Guterl CC, See EY, Blanquer SB, Pandit A, Ferguson SJ, Benneker LM, Grijpma DW, Sakai D, Eglin D, Alini M, Iatridis JC, Grad S (2013) Challenges and strategies in the repair of ruptured annulus fibrosus. Eur Cells Mater 25:1–21

    Article  CAS  Google Scholar 

  2. Bron JL, Helder MN, Meisel HJ, Van Royen BJ, Smit TH (2009) Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. Eur Spine J Off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 18(3):301–313. doi:10.1007/s00586-008-0856-x

    Article  Google Scholar 

  3. Grunert P, Borde BH, Hudson KD, Macielak MR, Bonassar LJ, Hartl R (2014) Annular repair using high-density collagen gel: a rat-tail in vivo model. Spine 39(3):198–206. doi:10.1097/BRS.0000000000000103

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barth M, Weiss C, Thome C (2008) Two-year outcome after lumbar microdiscectomy versus microscopic sequestrectomy: part 1: evaluation of clinical outcome. Spine 33(3):265–272. doi:10.1097/BRS.0b013e318162018c

    Article  PubMed  Google Scholar 

  5. Wang X, You C, Hu X, Zheng Y, Li Q, Feng Z, Sun H, Gao C, Han C (2013) The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. Acta Biomater 9(8):7822–7832. doi:10.1016/j.actbio.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  6. Kim BS, Kim JS, Lee J (2013) Improvements of osteoblast adhesion, proliferation, and differentiation in vitro via fibrin network formation in collagen sponge scaffold. J Biomed Mater Res Part A 101(9):2661–2666. doi:10.1002/jbm.a.34567

    Article  Google Scholar 

  7. Chou CH, Lee HS, Siow TY, Lin MH, Kumar A, Chang YC, Chang C, Huang GS (2013) Temporal MRI characterization of gelatin/hyaluronic acid/chondroitin sulfate sponge for cartilage tissue engineering. J Biomed Mater Res Part A 101(8):2174–2180. doi:10.1002/jbm.a.34522

    Article  Google Scholar 

  8. Cheng NC, Estes BT, Young TH, Guilak F (2013) Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 19(3–4):484–496. doi:10.1089/ten.TEA.2012.0384

    Article  CAS  PubMed  Google Scholar 

  9. Stewart JM, Schultz DS, Lee OT, Trinidad ML (2009) Collagen cross-links reduce corneal permeability. Investig Ophthalmol Vis Sci 50(4):1606–1612. doi:10.1167/iovs.08-2727

    Article  Google Scholar 

  10. Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R, Mueller R (2004) Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25(14):2831–2841. doi:10.1016/j.biomaterials.2003.09.066

    Article  CAS  PubMed  Google Scholar 

  11. Lee CR, Grodzinsky AJ, Spector M (2001) The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 22(23):3145–3154

    Article  CAS  PubMed  Google Scholar 

  12. Pieper JS, van der Kraan PM, Hafmans T, Kamp J, Buma P, van Susante JL, van den Berg WB, Veerkamp JH, van Kuppevelt TH (2002) Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials 23(15):3183–3192

    Article  CAS  PubMed  Google Scholar 

  13. Olde Damink LH, Dijkstra PJ, van Luyn MJ, van Wachem PB, Nieuwenhuis P, Feijen J (1996) Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 17(8):765–773

    Article  CAS  PubMed  Google Scholar 

  14. Zhao X, Liu Y, Li W, Long K, Wang L, Liu S, Wang Y, Ren L (2015) Collagen based film with well epithelial and stromal regeneration as corneal repair materials: improving mechanical property by crosslinking with citric acid. Mater Sci Eng C Mater Biolog Appl 55:201–208. doi:10.1016/j.msec.2015.05.030

    Article  CAS  Google Scholar 

  15. Yang J, Zhang Y, Gautam S, Liu L, Dey J, Chen W, Mason RP, Serrano CA, Schug KA, Tang L (2009) Development of aliphatic biodegradable photoluminescent polymers. Proc Natl Acad Sci USA 106(25):10086–10091. doi:10.1073/pnas.0900004106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA (2006) Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 27(9):1889–1898. doi:10.1016/j.biomaterials.2005.05.106

    Article  CAS  PubMed  Google Scholar 

  17. Taguchi T, Saito H, Iwasashi M, Sakane M, Kakinoki S, Ochiai N, Tanaka J (2007) Development of a novel glue consisting of naturally-derived biomolecules: citric acid and human serum albumin. J Nanosci Nanotechnol 7(3):742–747

    Article  CAS  PubMed  Google Scholar 

  18. Masuda K, Aota Y, Muehleman C, Imai Y, Okuma M, Thonar EJ, Andersson GB, An HS (2005) A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30(1):5–14

    Article  PubMed  Google Scholar 

  19. Yu LP, Qian WW, Yin GY, Ren YX, Hu ZY (2012) MRI assessment of lumbar intervertebral disc degeneration with lumbar degenerative disease using the Pfirrmann grading systems. PLoS One 7(12):e48074. doi:10.1371/journal.pone.0048074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 389:94–101

    Article  Google Scholar 

  21. Melrose J, Smith SM, Little CB, Moore RJ, Vernon-Roberts B, Fraser RD (2008) Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 17(9):1131–1148. doi:10.1007/s00586-008-0712-z

    Article  Google Scholar 

  22. Wilke HJ, Ressel L, Heuer F, Graf N, Rath S (2013) Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device. Spine 38(10):E587–E593. doi:10.1097/BRS.0b013e31828ca4bc

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parker SL, Grahovac G, Vukas D, Vilendecic M, Ledic D, McGirt MJ, Carragee EJ (2013) Effect of an annular closure device (Barricaid) on same level recurrent disc herniation and disc height loss after primary lumbar discectomy: two-year results of a multi-center prospective cohort study. J Spinal Disord Tech. doi:10.1097/BSD.0b013e3182956ec5

    PubMed  Google Scholar 

  24. Bailey A, Araghi A, Blumenthal S, Huffmon GV, Anular Repair Clinical Study G (2013) Prospective, multicenter, randomized, controlled study of anular repair in lumbar discectomy: two-year follow-up. Spine 38(14):1161–1169. doi:10.1097/BRS.0b013e31828b2e2f

    Article  PubMed  Google Scholar 

  25. Peter Grunert BHB, Towne SB, Moriguchi Y, Hudson KD, Bonassar LJ, Härtl R (2015) Riboflavin crosslinked high-density collagen gel for the repair of annular defects in intervertebral discs: an in vivo study. Acta Biomater 2015(26):215–224. doi:10.1016/j.actbio.2015.06.006

    Article  Google Scholar 

  26. Long Xin CZ, Zhong F, Fan S, Wang W, Wang Z (2016) Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model. Eur J Med Res 21:7. doi:10.1186/s40001-016-0202-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhen Li PL, Pattappa G, Collin E, Alini M, Grad S, Peroglio M (2016) Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs. Eur Spine J 25(9):2898–2908. doi:10.1007/s00586-016-4542-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Huang or Yue Zhou.

Ethics declarations

Conflict of interest

All authors have no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Shang, J. et al. Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study. Eur Spine J 26, 884–893 (2017). https://doi.org/10.1007/s00586-016-4898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4898-1

Keywords

Navigation