Advertisement

European Spine Journal

, Volume 27, Issue 2, pp 458–466 | Cite as

Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years

  • Celia Amabile
  • Jean-Charles Le Huec
  • Wafa Skalli
Original Article

Abstract

Purpose

The aim was to quantify the postural alignment of asymptomatic elderly, in comparison to a reference population, searching for possible invariants and compensatory mechanisms.

Methods

41 volunteers (49–76 years old) underwent bi-planar X-rays with 3D reconstructions of the spine and pelvis. Alignment parameters were compared with those of a reference group of asymptomatic subjects younger than 40 years old, with a particular focus on center of acoustic meati (CAM) and odontoid (OD) with regard to hip axis (HA). Possible markers of compensation were also investigated.

Results

No significant difference among groups appeared for CAM-HA and OD-HA parameters. Twenty four percent of elders had an abnormally high SVA value and twenty seven percent had an abnormal global spine inclination. Increased pelvic tilt and cervical lordosis allowed maintaining the head above the pelvis.

Conclusions

CAM-HA and OD-HA appeared quasi-invariant even in asymptomatic elderly. Some subjects exhibited alteration of spine alignment, compensated at the pelvis and cervical regions.

Keywords

Postural alignment 3D reconstruction Asymptomatic elderly 

Notes

Acknowledgments

The authors are grateful to the Banque Public d’Investissement for financial support through the dexEOS project part of the French FUI14 program. Authors thank the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling, and in particular COVEA and Société Générale. The authors thank EOS Imaging for their help in the data collection.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Vital J-M, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane. A study of the center of gravity of the head. Surg Radiol Anat 8:169–173. doi: 10.1007/BF02427845 CrossRefPubMedGoogle Scholar
  2. 2.
    Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) Pediatr. spine Princ. Pract., Wein-stei. Raven Press ltd, pp 479–496Google Scholar
  3. 3.
    Dubousset J, Charpak G, Skalli W et al (2010) EOS: a new imaging system with low dose radiation in standing position for spine and bone & joint disorders. J Musculoskelet Res 13:1–12CrossRefGoogle Scholar
  4. 4.
    Amabile C, Pillet H, Lafage V et al (2016) A new invariant parameter characterizing the postural alignment of young healthy adults. Eur Spine J. doi: 10.1007/s00586-016-4552-y Google Scholar
  5. 5.
    Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20:626–633. doi: 10.1007/s00586-011-1930-3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Duval-Beaupère G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462CrossRefPubMedGoogle Scholar
  7. 7.
    El Fegoun AB, Schwab F, Gamez L et al (2005) Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine (Phila Pa 1976) 30:1535–1540CrossRefGoogle Scholar
  8. 8.
    Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi: 10.2106/JBJS.D.02043 CrossRefPubMedGoogle Scholar
  9. 9.
    Schwab F, Lafage V, Boyce R et al (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976) 31:E959–E967. doi: 10.1097/01.brs.0000248126.96737.0f CrossRefGoogle Scholar
  10. 10.
    Lafage V, Schwab F, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578CrossRefGoogle Scholar
  11. 11.
    Kim YB, Kim YJ, Ahn YJ et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J 23:1400–1406. doi: 10.1007/s00586-014-3236-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Gangnet N, Pomero V, Dumas R et al (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat 25:424–433. doi: 10.1007/s00276-003-0154-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Le Huec J-C, Demezon H, Aunoble S (2014) Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J 24:63–71. doi: 10.1007/s00586-014-3632-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Steffen J-S, Obeid I, Aurouer N et al (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767. doi: 10.1007/s00586-009-1249-5 CrossRefPubMedGoogle Scholar
  15. 15.
    Iyer S, Lenke LG, Nemani VM et al (2016) Variations in sagittal alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976). doi: 10.1097/BRS.0000000000001642 Google Scholar
  16. 16.
    Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66:271–273PubMedGoogle Scholar
  17. 17.
    Million R, Hall R, Nilsen K, Baker R (1982) Assessment of the progress of the back-pain patient. Spine (Phila Pa 1976) 7:204–212CrossRefGoogle Scholar
  18. 18.
    Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2284–2289. doi: 10.1097/01.brs.0000142224.46796.a7 CrossRefGoogle Scholar
  19. 19.
    Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 15:457–466. doi: 10.1080/10255842.2010.540758 CrossRefPubMedGoogle Scholar
  20. 20.
    Mitton D, Deschênes S, Laporte S et al (2006) 3D reconstruction of the pelvis from biplanar radiography. Comput Methods Biomech Biomed Engin 9:1–5CrossRefPubMedGoogle Scholar
  21. 21.
    Humbert L, De Guise JA, Godbout B et al (2009) Fast 3D reconstruction of the spine from biplanar radiography: a diagnosis tool for routine scoliosis diagnosis and research in biomechanics. Comput Methods Biomech Biomed Engin 12:151–163. doi: 10.1080/10255840903081222 CrossRefGoogle Scholar
  22. 22.
    Quijano S, Serrurier A, Aubert B et al (2013) Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 35:1703–1712. doi: 10.1016/j.medengphy.2013.07.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance. J Am Stat Assoc 62:399–402CrossRefGoogle Scholar
  24. 24.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353CrossRefGoogle Scholar
  25. 25.
    Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:S834–S841. doi: 10.1007/s00586-013-3030-z CrossRefPubMedGoogle Scholar
  26. 26.
    Diebo B, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40:642–649. doi: 10.1097/BRS.0000000000000844 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Arts et Métiers ParisTech, LBM/Institut de Biomécanique Humaine Georges CharpakParisFrance
  2. 2.Orthospine Department 2Université BordeauxBordeaux CedexFrance

Personalised recommendations