Skip to main content

Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis

Abstract

Purpose

Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spinal column of unknown etiology. Multiple factors could be involved, including neurosensory pathways and, potentially, an elective disorder of dynamic proprioception. The purpose of this study was to determine whether routine balance tests could be used to demonstrate an elective alteration of dynamic proprioception in AIS.

Methods

This was a multicentre case–control study based on prospectively collected clinical data, in three hospitals pediatric, with spine consultation, from January 2013 through April 2015. From an original population of 547 adolescents, inclusion and non-inclusion criteria indentified 114 adolescents with right thoracic AIS (mean age 14.5 ± 1.9 years, Cobb angle 35.7 ± 15.3°) and 81 matched adolescents without scoliosis (mean age 14.1 ± 1.9 years). Participants performed three routine clinical balance tests to assess the static and dynamic proprioception: the Fukuda–Utenberger stepping test (angle of rotation in degrees and distance of displacement in cm) to assess dynamic balance; the sharpened Romberg test and the unipedal stance test (eyes closed) to assess static balance.

Results

There was no significant difference between AIS subjects and controls for the static tests, but there was a significant difference for the dynamic test for both measures: distance of displacement (p < 0.01) and angle of rotation (p < 0.0001). This result confirms our initial these: the dynamic proprioception is altered electively in AIS.

Conclusion

These findings confirm recent AIS studies. Our results might be related to immature central integration of dynamic proprioceptive input leading to a poorly adapted motor response, particularly for postural control of the, in AIS. These balance tests can be performed in routine practice. Their validity as a biomarker for screening and monitoring purposes should be assessed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet 371:1527–1537

    Article  PubMed  Google Scholar 

  2. De Sèze M, Cugy E (2012) Pathogenesis of idiopathic scoliosis: a review. Ann Phys Rehabil Med 55:128–138

    Article  PubMed  Google Scholar 

  3. Patten SA, Margaritte-Jeannin P, Bernard JC, Alix E, Labalme A, Besson A, Girard SL, Fendri K, Fraisse N, Biot B, Poizat C, Campan-Fournier A, Abelin-Genevois K, Cunin V, Zaouter C, Liao M, Lamy R, Lesca G, Menassa R, Marcaillou C, Letexier M, Sanlaville D, Berard J, Rouleau GA, Clerget-Darpoux F, Drapeau P, Moldovan F, Edery P (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Invest 125:1124–1128

    Article  PubMed  PubMed Central  Google Scholar 

  4. Catanzariti JF, Agnani O, Guyot MA, Wlodyka-Demaille S, Khenioui H, Donze C (2014) Does adolescent idiopathic scoliosis relate to vestibular disorders? A systematic review. Ann Phys Rehabil Med 57:465–479

    Article  PubMed  Google Scholar 

  5. Assaiante C, Barlaam F, Cignetti F, Vaugoyeau M (2014) Body schema building during childhood and adolescence: a neurosensory approach. Neurophysiol Clin 44(1):3–12

    CAS  Article  PubMed  Google Scholar 

  6. Haumont T, Gauchard GC, Lascombes P, Perrin PP (2011) Postural instability in early-stage idiopathic scoliosis in adolescent girls. Spine (Phila Pa 1976) 36:E847–E854

    Article  Google Scholar 

  7. Simoneau M, Richer N, Mercier P, Allard P, Teasdale N (2006) Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res 170(4):576–582

    Article  PubMed  Google Scholar 

  8. Wang D, Shi L, Liu S, Hui SC, Wang Y, Cheng JC, Chu WC (2013) Altered topological organization of cortical network in adolescent girls with idiopathic scoliosis. PLoS One 8(12):e83767

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pialasse JP, Descarreaux M, Mercier P, Simoneau M (2015) Sensory reweighting is altered in adolescent patients with scoliosis: evidence from a neuromechanical model. Gait Posture 42(4):558–563

    Article  PubMed  Google Scholar 

  10. Herman R, Mixon J, Fisher A, Maulucci R, Stuyck J (1985) Idiopathic scoliosis and the central nervous system: a motor control problem. The Harrington lecture, 1983. Scoliosis Research Society. Spine (Phila Pa 1976) 10(1):1–14

  11. Catanzariti JF, Salomez E, Bruandet JM, Thevenon A (2001) Visual deficiency and scoliosis. Spine (Phila pa 1976) 26:48–52

    CAS  Article  Google Scholar 

  12. Hawasli AH, Hullar TE, Dorward IG (2015) Idiopathic scoliosis and the vestibular system. Eur Spine J 24(2):227–233

    Article  PubMed  Google Scholar 

  13. Cignetti F, Caudron S, Vaugoyeau M, Assaiante C (2013) Body schema disturbance in adolescence: from proprioceptive integration to the perception of human movement. J Mot Learn Dev 1:49–58

    Article  Google Scholar 

  14. Assaiante C, Mallau S, Viel S, Jover M, Schmitz C (2005) Development of postural control in healthy children: a functional approach. Neural Plast 12:109–118

    Article  PubMed  PubMed Central  Google Scholar 

  15. Assaiante C, Amblard B (1995) An ontogenetic model of sensorimotor organization of balance control in humans. Hum Mov Sci 1:13–43

    Article  Google Scholar 

  16. Assaiante C, Mallau S, Jouve JL, Bollini G, Vaugoyeau M (2012) Do adolescent idiopathic scoliosis (AIS) neglect proprioceptive information in sensory integration of postural control? PLoS One 7:e40646

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Assaiante C, Caudron S, Fortin C, Bollini G, Vaugoyeau M (2011) Contribution différentiée des informations proprioceptives statiques versus dynamiques dans le contrôle postural des adolescents avec scoliose. Neurophysiol Clin 41:202

    Article  Google Scholar 

  18. Pérennou D, Decavel P, Manckoundia P, Penven Y, Mourey F, Launay F, Pfitzenmeyer P, Casillas JM (2005) Evaluation of balance in neurologic and geriatric disorders. Ann Réadapt Med Phys 48:317–335

    Article  PubMed  Google Scholar 

  19. Boudier-Revéret M, Mazer B, Feldman DE, Shrier I (2011) Practice management of musculoskeletal injuries in active children. Br J Sports Med 45(14):1137–1143

    Article  PubMed  Google Scholar 

  20. Honaker JA, Shepard NT (2012) Performance of Fukuda stepping test as a function of the severity of caloric weakness in chronic dizzy patients. J Am Acad Audiol 23:616–622

    Article  PubMed  Google Scholar 

  21. Hong SK, Park JH, Kwon SY, Kim JS, Koo JW (2015) Clinical efficacy of the Romberg test using a foam pad to identify balance problems: a comparative study with the sensory organization test. Eur Arch Oto-Rhino-Laryngol 272(10):2741–2747

    Article  Google Scholar 

  22. Black FO, Wall C III, Rockette HE Jr, Kitch R (1982) Normal subject postural sway during the Romberg test. Am J Otolaryngol 5:3309–3318

    Google Scholar 

  23. Honaker JA, Boismier TE, Shepard NP, Shepard NT (2009) Fukuda stepping test: sensitivity and specificity. J Am Acad Audiol 20:311–314

    Article  PubMed  Google Scholar 

  24. Radovanovic S, Korotkov A, Ljubisavljevic M, Lyskov E, Thunberg J, Kataeva G, Danko S, Roudas M, Pakhomov S, Medvedev S, Johansson H (2002) Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp Brain Res 143:276–285

    Article  PubMed  Google Scholar 

  25. Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S (2013) Neuromagnetic activation following active and passive finger movements. Brain Behav 3:178–192

    Article  PubMed  PubMed Central  Google Scholar 

  26. Viel S, Vaugoyeau M, Assaiante C (2009) Adolescence: a transient period of proprioceptive neglect in sensory integration of postural control. Mot Control 13:25–42

    Article  Google Scholar 

  27. Olivier I, Palluel E, Nougier V (2008) Effects of attentional focus on postural sway in children and adults. Exp Brain Res 185:341–345

    Article  PubMed  Google Scholar 

  28. Guyot MA, Agnani O, Peyrodie L, Samantha D, Donze C, Catanzariti JF (2016) Cervicocephalic relocation test to evaluate cervical proprioception in adolescent idiopathic scoliosis. Eur Spine J 25(10):3130–3136

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the HARPS Association members for their helpful comments (study methodology). The authors thank the rehabilitation teams in the participating centers whose cooperation was essential for this work (clinical balance tests) (C. Delobel, J. Guibaud, C. Dufour, M. Avila, C. Decock, C. Vandermeiren, C. Jacquemin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Catanzariti.

Ethics declarations

Conflict of interest

Authors have any potential conflict of interest, real or perceived; without study sponsor, in study design, the collection, analysis, and interpretation of data, the writing of the report, and the decision to submit the paper for publication.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Berre, M., Guyot, MA., Agnani, O. et al. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J 26, 1638–1644 (2017). https://doi.org/10.1007/s00586-016-4802-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4802-z

Keywords

  • Idiopathic scoliosis
  • Proprioceptive sensory
  • Postural balance test
  • Postural control
  • Fukuda stepping test