Skip to main content
Log in

Cobb-1 versus cobb-to-cobb anterior fusion for adolescent idiopathic scoliosis Lenke 5C curves: a radiological comparative study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Anterior fusion is a well-established procedure for the treatment of Lenke 5C adolescent idiopathic scoliosis (AIS). This retrospective study aimed to assess preoperative and postoperative radiographic differences between the conventional anterior fusion and anterior short fusions (ASF) in Lenke 5C AIS.

Methods

Radiographic data of 42 consecutive cases of Lenke 5C AIS, which were surgically treated through anterior segmental fusion, were analyzed retrospectively. Patients have been divided into two groups: C group (n = 19) treated by the conventional fusion from the proximal end vertebra to the distal end vertebra of the main curve and C-1 group (n = 23) treated by ASF, sparing the lowest end vertebra of the main curve. Cobb angles of main curve, apical vertebra tilt, C7 coronal tilt, lowest instrumented vertebra angle (LIV angle), LIV adjacent level disc angulation (LIVDA), and the first uninstrumented vertebra angle (FUV angle) were measured on anteroposterior radiographs of the entire spine. LIVDA, FUV wedging, and rotation were measured on stretch films. C7 sagittal tilt, lumbar lordosis, thoracic kyphosis, and proximal kyphosis junction were measured on lateral radiographs of the entire spine. Repeated-measures analysis of variance and fisher test were used for the statistical analysis.

Results

The preoperative main curve was 39.9 ± 9.1° in the C group vs. (versus) 42.8 ± 11.8° in the C-1 group. At a mean follow-up of 26.2 months (range 10.5–66.3 months), postoperative main curve improved of 75.8 ± 21.2 % (10.4 ± 9.2°, p < 0.001) in the C group and of 52.7 ± 18.7 % (20.1 ± 8.1°, p < 0.001) in the C-1 group. All parameters improved except the LIVDA, which was slightly impaired, especially in the C-1 group with 5.6 ± 4.2° vs. 4.4 ± 2.2° in the C group. On stretch films, FUV rotation was the only parameter to differ; it was graded at 1 ± 0.7 in the C-1 group vs. 0.6 ± 0.5 in the C group (p = 0.04). No disk obliquity just under the future instrumentation and equivalent FUV wedging were found in any of the two groups.

Conclusions

The conventional anterior fusion and ASF give equivalent correction in Lenke 5C AIS, but ASF seems to induce adding-on of the disk below the LIV. FUV rotation on stretch films does not seem to be a predictive factor of postoperative radiological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Senkoylu A, Luk KDK, Wong YW, Cheung KMC (2013) Prognosis of spontaneous thoracic curve correction after the selective anterior fusion of thoracolumbar/lumbar (Lenke 5C) curves in idiopathic scoliosis. Spine 14(7):1117–1124

    Article  Google Scholar 

  2. de Kleuver M, Lewis SJ, Germscheid NM, Kamper SJ, Alanay A, Berven SH et al (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 23(12):2603–2618

    Article  PubMed  Google Scholar 

  3. Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis. A preliminary report. Clin Orthop. 62:192–202

    Article  CAS  PubMed  Google Scholar 

  4. Zielke K, Stunkat R, Beaujean F (1976) Ventrale derotations-spondylodesis (author’s transl). Arch Für Orthop Unf-Chir 85(3):257–277

    Article  CAS  Google Scholar 

  5. Kaneda K, Shono Y, Satoh S, Abumi K (1996) New anterior instrumentation for the management of thoracolumbar and lumbar scoliosis. Application of the Kaneda two-rod system. Spine 21(10):1250–1261–1262

    Article  CAS  PubMed  Google Scholar 

  6. Kusakabe T, Mehta JS, Gaines RW (2011) Short segment bone-on-bone instrumentation for adolescent idiopathic scoliosis: a mean follow-up of six years. Spine 36(14):1123–1130

    Article  PubMed  Google Scholar 

  7. Brodner W, Mun Yue W, Möller HB, Hendricks KJ, Burd TA, Gaines RW (2003) Short segment bone-on-bone instrumentation for single curve idiopathic scoliosis. Spine 28(20):S224–S233

    Article  PubMed  Google Scholar 

  8. Gille O, Jolivet E, Dousset V, Degrise C, Obeid I, Vital J-M et al (2007) Erector spinae muscle changes on magnetic resonance imaging following lumbar surgery through a posterior approach. Spine 32(11):1236–1241

    Article  PubMed  Google Scholar 

  9. Kawaguchi Y, Matsui H, Tsuji H (1994) Back muscle injury after posterior lumbar spine surgery. Part 2: histologic and histochemical analyses in humans. Spine 19(22):2598–2602

    Article  CAS  PubMed  Google Scholar 

  10. Dong Y, Weng X, Zhao H, Zhang J, Shen J, Qiu G (2015) Lenke 5C curves in adolescent idiopathic scoliosis: anterior vs posterior selective fusion. Neurosurg 78(3):324–331

    Article  Google Scholar 

  11. Bernstein RM, Hall JE (1998) Solid rod short segment anterior fusion in thoracolumbar scoliosis. J Pediatr Orthop Part B 7(2):124–131

    Article  CAS  Google Scholar 

  12. Hall JE, Hall J (1997) Short segment anterior instrumentation for thoracolumbar scoliosis. In: Bridwell KH, DeWald RL (eds) The textbook of spinal surgery, 2nd edn. Lippincott-Raven, Philadelphia, pp 665–670

    Google Scholar 

  13. Lonstein JE (2006) Scoliosis: surgical versus nonsurgical treatment. Clin Orthop 443:248–259

    Article  PubMed  Google Scholar 

  14. Violas P, Estivalezes E, Briot J, Sales de Gauzy J, Swider P (2007) Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery. Spine 32(15):E405–E412

    Article  PubMed  Google Scholar 

  15. Vaughan JJ, Winter RB, Lonstein JE (1996) Comparison of the use of supine bending and traction radiographs in the selection of the fusion area in adolescent idiopathic scoliosis. Spine 21(21):2469–2473

    Article  CAS  PubMed  Google Scholar 

  16. Polly DW, Sturm PF (1998) Traction versus supine side bending. Which technique best determines curve flexibility? Spine. 23(7):804–808

    Article  PubMed  Google Scholar 

  17. Watanabe K, Kawakami N, Nishiwaki Y, Goto M, Tsuji T, Obara T et al (2007) Traction versus supine side-bending radiographs in determining flexibility: what factors influence these techniques? Spine. 32(23):2604–2609

    Article  PubMed  Google Scholar 

  18. Koller H, Meier O, Hitzl W (2014) Criteria for successful correction of thoracolumbar/lumbar curves in AIS patients: results of risk model calculations using target outcomes and failure analysis. Eur Spine J 23(12):2658–2671

    Article  PubMed  Google Scholar 

  19. Nash CL, Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51(2):223–229

    Article  PubMed  Google Scholar 

  20. Wang Y, Fei Q, Qiu G, Lee CI, Shen J, Zhang J et al (2008) Anterior spinal fusion versus posterior spinal fusion for moderate lumbar/thoracolumbar adolescent idiopathic scoliosis: a prospective study. Spine 33(20):2166–2172

    Article  PubMed  Google Scholar 

  21. Lee GA, Betz RR, Clements DH, Huss GK (1999) Proximal kyphosis after posterior spinal fusion in patients with idiopathic scoliosis. Spine 24(8):795–799

    Article  CAS  PubMed  Google Scholar 

  22. Rhee JM, Bridwell KH, Won DS, Lenke LG, Chotigavanichaya C, Hanson DS (2002) Sagittal plane analysis of adolescent idiopathic scoliosis: the effect of anterior versus posterior instrumentation. Spine 27(21):2350–2356

    Article  PubMed  Google Scholar 

  23. Sudo H, Ito M, Kaneda K, Shono Y, Abumi K (2013) Long-term outcomes of anterior dual-rod instrumentation for thoracolumbar and lumbar curves in adolescent idiopathic scoliosis: a twelve to twenty-three-year follow-up study. J Bone Joint Surg Am 95(8):e491–e498

    Article  Google Scholar 

  24. Kamimura M, Ebara S, Kinoshita T, Itoh H, Nakakohji T, Takaoka K et al (1999) Anterior surgery with short fusion using the Zielke procedure for thoracic scoliosis: focus on the correction of compensatory curves. J Spinal Disord 12(6):451–460

    Article  CAS  PubMed  Google Scholar 

  25. Wajanavisit W, Woratanarat P, Woratanarat T, Aroonjaruthum K, Kulachote N, Leelapatana W et al (2010) The evaluation of short fusion in idiopathic scoliosis. Indian J Orthop 44(1):28–34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20(Suppl 5):609–618

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hee H-T, Yu Z-R, Wong H-K (2007) Comparison of segmental pedicle screw instrumentation versus anterior instrumentation in adolescent idiopathic thoracolumbar and lumbar scoliosis. Spine 32(14):1533

    Article  PubMed  Google Scholar 

  28. Tao F, Wang Z, Li M, Pan F, Shi Z, Zhang Y et al (2012) A comparison of anterior and posterior instrumentation for restoring and retaining sagittal balance in patients with idiopathic adolescent scoliosis. J Spinal Disord Tech 25(6):303–308

    Article  PubMed  Google Scholar 

  29. Wang Y, Bünger CE, Zhang Y, Wu C, Li H, Dahl B et al (2013) Lowest instrumented vertebra selection for Lenke 5C scoliosis: a minimum 2-year radiographical follow-up. Spine 38(14):E894–E900

    Article  PubMed  Google Scholar 

  30. Lee CS, Ha J-K, Hwang CJ, Lee D-H, Kim TH, Cho JH (2016) Is it enough to stop distal fusion at L3 in adolescent idiopathic scoliosis with major thoracolumbar/lumbar curves? Eur Spine J

  31. Yu B, Zhang J-G, Qiu G-X, Lu W-C, Wang Y-P, Shen J-X et al (2010) Selective anterior thoracolumbar/lumbar fusion and instrumentation in adolescent idiopathic scoliosis patients. Chin Med J (Engl) 123(21):3003–3008

    Google Scholar 

  32. Liu Y, Li M, Zhu X-D, Zhou X-H, Chen H-J, Wang X-W et al (2009) Retrospective analysis of anterior correction and fusion for adolescent idiopathic thoracolumbar/lumbar scoliosis: the relationship between preserving mobile segments and trunk balance. Int Orthop 33(1):191–196

    Article  PubMed  Google Scholar 

  33. Lowe TG, Betz R, Lenke L, Clements D, Harms J, Newton P et al (2003) Anterior single-rod instrumentation of the thoracic and lumbar spine: saving levels. Spine 28(20):S208–S216

    Article  PubMed  Google Scholar 

  34. Kelly DM, McCarthy RE, McCullough FL, Kelly HR (2010) Long-term outcomes of anterior spinal fusion with instrumentation for thoracolumbar and lumbar curves in adolescent idiopathic scoliosis. Spine 35(2):194–198

    Article  PubMed  Google Scholar 

  35. Satake K, Lenke LG, Kim YJ, Bridwell KH, Blanke KM, Sides B et al (2005) Analysis of the lowest instrumented vertebra following anterior spinal fusion of thoracolumbar/lumbar adolescent idiopathic scoliosis: can we predict postoperative disc wedging? Spine 30(4):418–426

    Article  PubMed  Google Scholar 

  36. Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy J-PC, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine. 27(4):387–392

    Article  PubMed  Google Scholar 

  37. Otani K, Saito M, Sibasaki K (1997) Anterior instrumentation in idiopathic scoliosis: a minimum follow-up of 10 years. Int Orthop 21(1):4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verma K, Auerbach JD, Kean KE, Chamas F, Vorsanger M, Lonner BS (2010) Anterior spinal fusion for thoracolumbar scoliosis: comprehensive assessment of radiographic, clinical, and pulmonary outcomes on 2-years follow-up. J Pediatr Orthop 30(7):664–669

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Dubory.

Ethics declarations

Funding

No author has received funding for this work from any of the following organizations: National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI); and other(s).

Conflict of interest

No author has conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubory, A., Miladi, L., Ilharreborde, B. et al. Cobb-1 versus cobb-to-cobb anterior fusion for adolescent idiopathic scoliosis Lenke 5C curves: a radiological comparative study. Eur Spine J 26, 1711–1720 (2017). https://doi.org/10.1007/s00586-016-4788-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4788-6

Keywords

Navigation