Skip to main content
Log in

Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Based on the structural anatomy, loading condition and range of motion (ROM), no quadruped animal has been shown to accurately mimic the structure and biomechanical function of the human spine. The objective of this study is to quantify the thoracic vertebrae geometry of the kangaroo, and compare with adult human, pig, sheep, and deer.

Methods

The thoracic vertebrae (T1–T12) from whole body CT scans of ten juvenile kangaroos (ages 11–14 months) were digitally reconstructed and geometric dimensions of the vertebral bodies, endplates, pedicles, spinal canal, processes, facets and intervertebral discs were recorded. Similar data available in the literature on the adult human, pig, sheep, and deer were compared to the kangaroo. A non-parametric trend analysis was performed.

Results

Thoracic vertebral dimensions of the juvenile kangaroo were found to be generally smaller than those of the adult human and quadruped animals. The most significant (p < 0.001) correlations (Rho) found between the human and kangaroo were in vertebrae and endplate dimensions (0.951 ≤ Rho ≤ 0.963), pedicles (0.851 ≤ Rho ≤ 0.951), and inter-facet heights (0.891 ≤ Rho ≤ 0.967). The deer displayed the least similar trends across vertebral levels.

Conclusions

Similarities in thoracic spine vertebral geometry, particularly of the vertebrae, pedicles and facets may render the kangaroo a more clinically relevant human surrogate for testing spinal implants. The pseudo-biped kangaroo may also be a more suitable model for the human thoracic spine for simulating spine deformities, based on previously published similarities in biomechanical loading, posture and ROM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akbarnia BA, Cheung K, Noordeen H et al. (2013). Next Generation of Growth-Sparing Technique: Preliminary Clinical Results of a Magnetically Controlled Growing Rod (MCGR) in 14 Patients With Early Onset Scoliosis. Spine 38(8):665–70

    Article  PubMed  Google Scholar 

  2. Deviren V, Acaroglu E, Lee J et al (2005) Pedicle screw fixation of the thoracic spine: an in vitro biomechanical study on different configurations. Spine 30(22):2530–2537

    Article  PubMed  Google Scholar 

  3. Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ (2013) Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J. 13(8):957–965

    Article  PubMed  Google Scholar 

  4. Mannen EM, Anderson JT, Arnold PM, Friis EA (2015) Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. J Biomech 48(10):2060–2066

    Article  PubMed  Google Scholar 

  5. McCarthy RE, Luhmann S, Lenke L, McCullough FL (2014) The shilla growth guidance technique for early-onset spinal deformities at 2-year follow-up: a preliminary report. J Pediatr Orthop 34(1):1–7

    Article  PubMed  Google Scholar 

  6. Olgun ZD, Ahmadiadli H, Alanay A, Yazici M (2012) Vertebral body growth during growing rod instrumentation: growth preservation or stimulation? J Pediatr Orthop 32(2):184–189

    Article  PubMed  Google Scholar 

  7. Janssen MM, de Wilde RF, Kouwenhoven JW, Castelein RM (2011) Experimental animal models in scoliosis research: a review of the literature. Spine J 11(4):347–358

    Article  PubMed  Google Scholar 

  8. Agadir M, Sevastik B, Sevastik JA, Persson A, Isberg B (1988) Induction of scoliosis in the growing rabbit by unilateral rib-growth stimulation. Spine 13(9):1065–1069

    Article  CAS  PubMed  Google Scholar 

  9. Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine. 31(12):1314–1320

    Article  PubMed  Google Scholar 

  10. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31(13):1410–1414

    Article  PubMed  Google Scholar 

  11. Fekete TF, Kleinstück FS, Mannion AF, Kendik ZS, Jeszenszky DJ (2011) Prospective study of the effect of pedicle screw placement on development of the immature vertebra in an in vivo porcine model. Eur Spine J 20(11):1892–1898

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kanemura T, Kawakami N, Deguchi M, Mimatsu K, Iwata H (1997) Natural Course of experimental scoliosis in pinealectomized chickens. Spine 22(14):1563–1567

    Article  CAS  PubMed  Google Scholar 

  13. McLain RF, Yerby SA, Moseley TA (2002) Comparative morphometry of L4 vertebrae comparison of large animal models for the human lumbar spine. Spine 27(8):E200–E206

    Article  PubMed  Google Scholar 

  14. Newton PO, Farnsworth CL, Upasani VV, Chambers RC, Varley E, Tsutsui S (2011) Effects of intraoperative tensioning of an anterolateral spinal tether on spinal growth modulation in a porcine model. Spine 36(2):109–117

    Article  PubMed  Google Scholar 

  15. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 27(7):689–693

    Article  PubMed  Google Scholar 

  16. Olson EJ, Hanley EN, Rudert MJ, Baratz ME (1991) Vertebral column allografts for the treatment of segmental spine defects—an experimental investigation in dogs. Spine 16(9):1081–1088

    Article  CAS  PubMed  Google Scholar 

  17. Alini M, Eisenstein SM, Ito K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19

    Article  PubMed  Google Scholar 

  18. Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16(12):2186–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sheng SR, Wang XY, Xu HZ, Zhu GQ, Zhou YF (2010) Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 19(1):46–56

    Article  PubMed  Google Scholar 

  20. Boszczyk BM, Boszczyk AA, Putz R (2001) Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec 264:157–168

    Article  CAS  PubMed  Google Scholar 

  21. Busscher I, van der Veen AJ, van Dieen JH, Kingma I, Verkerke GJ, Veldhuizen AG (2010) In vitro biomechanical characteristics of the spine: a comparison between human and porcine spinal segments. Spine 35(2):E35–E42

    Article  PubMed  Google Scholar 

  22. Jiang H, Moreau M, Raso JV, Russell G, Bagnall K (1995) A comparison of spinal ligaments-differences between bipeds and quadrupeds. J Anat 187:85–91

    PubMed  PubMed Central  Google Scholar 

  23. Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine—biomechanical considerations. Eur Spine J 11(2):137–144

    Article  PubMed  PubMed Central  Google Scholar 

  24. Animal models in orthopaedic research. Boca Raton, Florida: CRC Press LLC, 1999

  25. Boden SD, Moskovitz PA, Morone MA, Toribitake Y (1996) Video-assisted lateral intertransverse process arthrodesis validation of a new minimally invasive lumbar spinal fusion technique in the rabbit and nonhuman primate (Rhesus) Models. Spine 21(22):2689–2697

    Article  CAS  PubMed  Google Scholar 

  26. Tominaga T, Dickman CA, Sonntag VKH, Coons S (1995) Comparative anatomy of the baboon and human cervical spine. Spine. 20(2):131–137

    Article  CAS  PubMed  Google Scholar 

  27. Colliard C, Rivard CH (1996) Vertebral deformities and scoliosis. Eur Spine J 5:91–100

    Article  Google Scholar 

  28. Deguchi M, Kawakami N, Kanemura T (1996) Correction of scoliosis by rib resection in pinealectomized chickens. J Spinal Disord 9(3):207–213

    Article  CAS  PubMed  Google Scholar 

  29. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine 18(12):1609–1615

    Article  CAS  PubMed  Google Scholar 

  30. Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Jt Surg 77:134–138

    CAS  Google Scholar 

  31. Machida M, Miyashita Y, Murai I, Dubousset J, Yamada T, Kimura J (1997) Role of Serotonin for scoliosis deformity in pinealectomized chickens. Spine. 22(12):1297–1301

    Article  CAS  PubMed  Google Scholar 

  32. Wang XY, Jiang H, Raso JV et al (1997) Characterization of the scoliosis that develops after pinealectomy in the chicken and comparison with adolescent idiopathic scoliosis in humans. Spine. 23(22):2626–2635

    Article  Google Scholar 

  33. Hodge AJ, Neethling WM, Glancy R (2004) Evaluation of stentless kangaroo aortic valves in the mitral position of juvenile sheep. J Heart Valve Dis 13(4):681–688

    PubMed  Google Scholar 

  34. Narine KK, Kramm K, Dumont K et al (2006) Hydrodynamic evaluation of kangaroo aortic valve matrices for tissue valve engineering. Artif Organs 30(6):432–439

    Article  PubMed  Google Scholar 

  35. Neethling WM, Papadimitriou JM, Swarts E, Hodge AJ (2000) Kangaroo versus porcine aortic valve tissue–valve geometry morphology, tensile strength and calcification potential. J Cardiovasc Surg (Torino). 41(3):341–348

    CAS  PubMed  Google Scholar 

  36. Lau SH (2013) Assessment of Macropus giganteus as a biomechanical model of the pediatric thorax: the school of engineering and applied sciences, University of Verginia

  37. Hutchinson JR (2004) Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J Morphol 262(1):421–440

    Article  PubMed  Google Scholar 

  38. Department of Sustainability E, Water, Population and Communities (2012) Commercial kangaroo harvesting fact sheet. In: Department of sustainability E, water, population and communities (ed) Commonwealth of Australia: Commonwealth of Australia. https://www.environment.gov.au/biodiversity/wildlife-trade/publications/commercial-kangaroo-harvesting-fact-sheet-2012. Accessed 22 July 2016

  39. Peters JR, Chandrasekaran C, Robinson LF, Servaes SE, Campbell RM Jr, Balasubramanian S (2015) Age- and gender-related changes in pediatric thoracic vertebral morphology. Spine J 15(5):1000–1020

    Article  PubMed  Google Scholar 

  40. Panjabi MM, Oxland T, Takata K, Goel V, Duranceau J, Krag M (1993) Articular facets of the human spine quantitative three-dimensional anatomy. Spine 18(10):1298–1310

    Article  CAS  PubMed  Google Scholar 

  41. Panjabi MM, Takata K, Goel V et al (1991) Thoracic human vertebrae quantitative three-dimensional anatomy. Spine 16(8):888–901

    Article  CAS  PubMed  Google Scholar 

  42. Zindrick MR, Knight GW, Sartori MJ, Carnevale TJ, Patwardhan AG, Lorenz MA (2000) Pedicle morphology of the immature thoracolumbar spine. Spine 25(21):2726–2735

    Article  CAS  PubMed  Google Scholar 

  43. Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19(7):1104–1114

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kumar N, Kukreti S, Ishaque M, Mulholland R (2000) Anatomy of deer spine and its comparison to the human spine. Anat Rec 260:189–203

    Article  CAS  PubMed  Google Scholar 

  45. Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22(20):2365–2374

    Article  CAS  PubMed  Google Scholar 

  46. Standring S (2008) Gray’s anatomy, 40th edn. Elsevier, Churchill Livingstone

    Google Scholar 

  47. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. J.B. Lippincott Company, Philadelphia

    Google Scholar 

  48. Nahum AM, Melvin J (2002) Accidental injury: biomechanics and prevention. Springer, New York

    Book  Google Scholar 

  49. Kretzer RM, Chaput C, Sciubba DM et al (2011) A computed tomography-based morphometric study of thoracic pedicle anatomy in a random United States trauma population. J Neurosurg Spine 14(2):235–243

    Article  PubMed  Google Scholar 

  50. Parent S, Labelle H, Skalli W, de Guise J (2001) Thoracic pedicle morphometry in vertebrae from scoliotic spines. Spine J 29(3):239–248

    Article  Google Scholar 

  51. Lee MC, Solomito M, Patel A (2013) Supine magnetic resonance imaging cobb measurements for idiopathic scoliosis are linearly related to measurements from standing plain radiographs. Spine 38(11):E656–E661

    Article  PubMed  Google Scholar 

  52. Yazici M, Acaroglu ER, Alanay A, Deviren V, Cila A, Surat A (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21:252–256

    CAS  PubMed  Google Scholar 

  53. Hasler C, Sprecher CM, Milz S (2010) Comparison of the immature sheep spine and the growing human spine a spondylometric database for growth modulating research. Spine 35(23):E1262–E1272

    Article  PubMed  Google Scholar 

  54. Chen X, Milne N, O’Higgins P (2005) Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J Morphol 266(2):167–181

    Article  PubMed  Google Scholar 

  55. Ouellet J, Odent T (2013) Animal models for scoliosis research: state of the art, current concepts and future perspective applications. Eur Spine J 22(Suppl 2):S81–S95

    Article  PubMed  Google Scholar 

  56. Bozkus H, Crawford NR, Chamberlain RH, Valenzuela TD, Espinoza A, Yüksel Z, Dickman CA (2005) Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques. Surg Endosc 19(12):1652–1665

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Reese Juel for assistance with the creation of digital artwork. This research was partly funded by Dr. Sriram Balasubramanian’s Faculty startup funds from Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sriram Balasubramanian.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, S., Peters, J.R., Robinson, L.F. et al. Thoracic spine morphology of a pseudo-biped animal model (kangaroo) and comparisons with human and quadruped animals. Eur Spine J 25, 4140–4154 (2016). https://doi.org/10.1007/s00586-016-4776-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4776-x

Keywords

Navigation